

PARAM Ganga

User’s Manual

Ver. 4.1
Last updated: March 27, 2024

www.cdac.in

PARAM Ganga – User’s Manual

 Page | 2

 Copyright Notice

Copyright © 2022 Centre for Development of Advanced Computing

All Rights Reserved.

Any technical documentation that is made available by C-DAC (Centre for Development of Advanced

Computing) is the copyrighted work of C-DAC and is owned by C-DAC. This technical documentation is

being delivered to you as is, and C-DAC makes no warranty as to its accuracy or use. Any use of the technical

documentation or the information contained therein is at the risk of the user. C-DAC reserves the right to make

changes without prior notice.

No part of this publication may be copied without the express written permission of C-DAC.

 Trademarks

CDAC, CDAC logo, NSM logo are trademarks or registered trademarks.

Other brands and product names mentioned in this manual may be trademarks or registered trademarks of their

respective companies and are hereby acknowledged.

 Intended Audience

This document is meant for PARAM Ganga users.

Typographic Conventions

Symbol Meaning

Blue underlined text A hyperlink or link you can click to go to a related

section in this document or to a URL in your web

browser.

 Bold The names of menus, menu items, headings, and

buttons.

 Italics Variables or placeholders or special terms in the document.

 Console commands

Console text

PARAM Ganga – User’s Manual

 Page | 3

 Getting help

For technical assistance or license renewal, please send an email to gangasupport@iitr.ac.in.

Give us your feedback
We value your feedback. Kindly send your comments on the content of this document to

gangasupport@iitr.ac.in. Please include the page number of the document along with your feedback.

 DISCLAIMER

The information contained in this document is subject to change without notice. C-DAC shall not be liable for

errors contained herein or for incidental or consequential damages in connection with the performance or use

of this manual.

PARAM Ganga – User’s Manual

 Page | 4

Contents

Introduction .. 9

System Architecture and Configuration .. 10

System Hardware Specifications .. 10

Master Nodes .. 10

Login Nodes .. 10

Service Nodes ... 11

CPU Compute Nodes .. 11

GPU Compute Nodes.. 11

Storage .. 12

Operating System .. 12

PARAM Ganga Architecture Diagram ... 13

Primary Interconnection Network .. 14

Secondary Interconnection Network .. 14

Software Stack .. 14

First Things First .. 18

Getting an Account on PARAM Ganga .. 18

First login .. 18

Forgot Password? .. 19

System Access... 19

Remote Access .. 20

Transferring files between local machine and HPC cluster .. 21

Tools.. 23

Running Interactive Jobs ... 25

Managing Jobs through its Lifecycle ... 26

walltime .. 26

List Partition ... 27

Addressing Basic Security Concerns ... 33

More about Batch Jobs (SLURM) ... 33

Parameters used in SLURM job script ... 34

I am familiar with PBS/ TORQUE. How do I migrate to SLURM? 37

Preparing Your Own Executable ... 38

Spack .. 42

PARAM Ganga – User’s Manual

 Page | 5

Introduction ... 42

To Use Pre-Installed Applications from Spack ... 43

To install new application ... 44

Uninstalling Packages ... 46

Using Environments ... 46

Packaging (For Application developers) ... 47

Sample SLURM script for OpenMP applications/programs. to use Spack 49

Sample SLURM script for MPI applications/programs to use Spack 49

Job Scheduling on PARAM Ganga ... 51

Scheduler .. 51

sinfo .. 51

PARAM Ganga SLURM Partitions and QoS ... 52

For Submitting the job .. 52

walltime .. 54

Debugging Your Codes .. 57

Introduction ... 57

Basics How Tos... 58

Conclusions ... 77

Points to Note.. 77

Overall Coding Modifications Done ... 77

Machine Learning / Deep Learning Application Development 78

How to Install your own Software? .. 79

Some Important Facts .. 80

About File Size ... 80

Little-Endian and Big-Endian issues? ... 81

Best Practices for HPC .. 82

Installed Applications/Libraries ... 82

Standard Application Programs on PARAM Ganga ... 83

LAMMPS Applications .. 83

GROMACS APPLICATION .. 86

Acknowledging the National Supercomputing Mission in Publications 89

Getting Help – PARAM Ganga Support ... 89

Steps to Create a New Ticket .. 90

PARAM Ganga – User’s Manual

 Page | 6

Closing Your Account on PARAM Ganga .. 92

References .. 98

PARAM Ganga – User’s Manual

 Page | 7

List of Figures
Figure 1 - PARAM Ganga Architecture Diagram ...

13 Figure 2 – Software Stack ..

16 Figure 3 - A snapshot of command using MobaXterm ..

23 Figure 4 - A snapshot of "scp" tool to transfer file to and from remote computer.

24

Figure 5 – Enter Captcha/String ... 24

Figure 6 - Output of sinfo command .. 27

Figure 7 – Snapshot depicting the usage of “Job Array”... 29

Figure 8 – scontrol show node displays compute node information 31

Figure 9 – scontrol show partition displays specific partition details 31

Figure 10 – scontrol show job displays specific job information .. 32

Figure 11 – sinfo Command ... 55

Figure 12 - Listing the shares of association to a cluster .. 59

Figure 13 – Snapshot of debugging process ... 64

Figure 14 – Snapshot of debugging process ... 65

Figure 15- Output at a debugging stage ... 66

Figure 16 – Snapshot of debugging process ... 67

Figure 17 – Output depicting “Arithmetic Exception” ..

68 Figure 18 – Snapshot of debugging process ...

68 Figure 19 – Well, we dumped core!! ...

68 Figure 20- Snapshot of debugging process ..

69 Figure 21 – Setting Breakpoint ..

70 Figure 22 – single stepping through to catch error!! ..

71 Figure 23 – Debugging continued ..

72

Figure 24 – Debugging continued .. 72

Figure 25 – Setting a watch point .. 73

Figure 26 – Debugging continued .. 74

Figure 27 – Well, back to square one!! .. 75

Figure 28 – Again Dumping Core!! Things are getting interesting or frustrating or both !! ...

76

Figure 29 – Debugging continued .. 76

Figure 30 – Debugging continued .. 77

Figure 31 – Debugging continued (Will it ever end?) ... 78

Figure 32 – We are almost there!! ... 78

Figure 33 – Debugging continued .. 79

Figure 34 – At last a clue!!! .. 80

Figure 35- Correctionapplied!! .. 81

Figure 36 – Resolved!!! ... 81

PARAM Ganga – User’s Manual

 Page | 8

Figure 37 – What all we did to get things right! ... 83

Figure 38 – Snapshot of Ticketing System .. 97

Figure 39 - Snapshot of Ticketing System .. 98

Figure 40 - Snapshot of Ticketing System .. 98

Figure 41 - Snapshot of Ticketing System .. 99

PARAM Ganga – User’s Manual

 Page | 9

Introduction

This document is the user manual for the PARAM Ganga Supercomputing facility at IIT

Roorkee. It covers a wide range of topics ranging from a detailed description of the

hardware infrastructure to the information required to utilize the supercomputer, such as

information about logging on to the supercomputer, submitting jobs, retrieving the results

on to user’s Laptop/ Desktop etc. In short, the manual describes all that one needs know to

effectively utilize PARAM Ganga.

The supercomputer PARAM Ganga is based on a heterogeneous and hybrid configuration

of Intel Xeon Cascade Lake processors, and NVIDIA Tesla V100. The system was designed

and implemented by HPC Technologies team, Centre for Development of Advanced

Computing (C-DAC).

It consists of 2 Master nodes, 10 Login nodes, 8 Service/Management nodes and 312

(CPU+GPU+HM) nodes with total peak computing capacity of 1.67 (CPU+GPU+HM)

PFLOPS performance.

PARAM Ganga – User’s Manual

 Page | 10

System Architecture and Configuration

System Hardware Specifications

PARAM Ganga system is based on processor Intel Xeon Platinum 8268, NVIDIA Tesla V100

with total peak performance of 1.6 PFLOPS. The cluster consists of compute nodes connected

with Mellanox (HRD) InfiniBand interconnect network. The system uses the Lustre parallel

file system.

● Total number of nodes: 332(20+312) o Service nodes: 20**(Master+

Login +Service +Management Nodes) o CPU only nodes: 150 o GPU

ready nodes: 64 o GPU nodes: 20 o High Memory nodes:78

Master Nodes

PARAM Ganga is an aggregation of a large number of computers connected through

networks. The basic purpose of the master node is to manage and monitor each of the

constituent components of PARAM Ganga from a system’s perspective. This involves

operations like monitoring the health of the components, the load on the components, the

utilization of various sub-components of the computers in PARAM Ganga.

 Master Nodes: 2

2* Intel Xeon G-6248

Cores =40, 2.5 GHz

Total Cores = 80 cores

Memory= 384 GB

HDD = 1 TBx8

Total Memory = 768 GB

Login Nodes

Login nodes are typically used for administrative tasks such as editing, writing scripts,

transferring files, managing your jobs and the like. You will always get connected to one of

the login nodes. From the login nodes you can get connected to a compute node and execute

an interactive job or submit batch jobs through the batch system (SLURM) to run your jobs

on compute nodes. For ALL users PARAM Ganga login nodes are the entry points and hence

are shared. By default, there will be a limit on the CPU time that can be used on a login node

by a user and there is a limit/user on the memory as well. If any of these are exceeded, the

job will get terminated.

 Login Nodes: 10

2* Intel Xeon G-6248

Cores = 40, 2.5 GHz

Total Cores = 800 cores

PARAM Ganga – User’s Manual

 Page | 11

Memory= 384 GB

HDD = 1 TBx8

Total Memory = 3072 GB

Service Nodes

Typically, the purpose of the service node is to provide Security, Management, Monitoring

and other services to the cluster.

 Service Nodes: 8

2* Intel Xeon G-6248

Cores = 40, 2.5 GHz

Total Cores = 800 cores

Memory= 384 GB

HDD = 1 TBx5

Total Memory= 3072 GB

CPU Compute Nodes

CPU nodes are indeed the work horses of PARAM Ganga. All the CPU intensive activities

are carried on these nodes. Users can access these nodes from the login node to run interactive

or batch jobs. Some of the nodes have higher memory, which can be exploited by users in the

aforementioned way.

CPU only Compute Nodes: 150

2* Intel Xeon Platinum 8268

Cores = 48, 2.9 GHz

Total Cores = 7200 cores

Memory= 192 GB, DDR4 2933 MHz Total Memory=28800 GB

GPU ready Compute Nodes: 64

2* Intel Xeon Platinum 8268

Cores = 48, 2.9 GHz

Total Cores = 3072 cores

Memory= 192 GB, DDR4 2933 MHz

SSD = 480 GB

Total Memory= 12,288 GB

GPU Compute Nodes

GPU compute nodes are the nodes that have CPU cores along with accelerators cards. For

some applications GPUs get markedly high performance. For exploiting these, one has to

make use of special libraries which map computations on the Graphical Processing Units

(Typically one has to make use of CUDA or OpenCL).

GPU Compute Nodes: 20

2* Intel Xeon Gold-6248 Total Cores = 800 cores

Cores = 40, 2.5 GHz

Memory= 192 GB, DDR4 2933 MHz Total Memory= 3840 GB

PARAM Ganga – User’s Manual

 Page | 12

SSD = 480 GB (local scratch) per node

2*Nvidia V100 per node

GPU Cores per node= 2*5120= 10240

GPU Memory = 16 GB HBM2 per Nvidia V100

CPU only Compute Nodes with High memory: 78

2* Intel Xeon Platinum 8268

Cores = 48, 2.9 GHz Total Cores = 3744 cores

Memory= 768 GB, DDR4 2933 MHz Total Memory=59904 GB

SSD = 480 GB

Storage

● Based on Lustre parallel file system

● Total useable capacity of 2.2PB Primary storage

● Throughput 50 GB/s

Operating System

● Operating system on PARAM Ganga is Linux – CentOS 7.9

PARAM Ganga – User’s Manual

 Page | 13

PARAM Ganga Architecture Diagram

Figure 1 - PARAM Ganga Architecture Diagram

Network infrastructure

A robust network infrastructure is essential to implement the basic functionalities of a cluster.

These functionalities are:

a) Management functionalities i.e., to monitor, troubleshoot, start, stop various

components of the cluster, etc. (Network/portion of Network which implements

this functionality is referred to as Management fabric).

b) Ensuring fast read/write access to the storage (Network/portion of Network which

implements this functionality is referred to as storage fabric).

c) Ensuring fast I/O operations like connecting to other clusters, connecting the

cluster to various users on the campus LAN, etc. (Network/portion of Network

which implements this functionality is referred to as I/O Fabric).

d) Ensuring high-bandwidth, low-latency communication amongst processors to for

achieving high-scalability (Network/portion of Network which implements this

functionality is referred to as Message Passing Fabric)

PARAM Ganga – User’s Manual

 Page | 14

Technically, all the aforementioned functionalities can be implemented in a single network.

From the perspectives of requirements, optimal performance and economic suitability, the

aforementioned functionalists are implemented using two different networks based on

different technologies, as mentioned next:

Primary Interconnection Network

Computing nodes of PARAM Ganga are interconnected by a high-bandwidth, low-latency

interconnect network.

InfiniBand: HDR 100 Gbps

InfiniBand is a high-performance communication architecture owned by Mellanox. This

communication architecture offers low communication latency, low power consumption and

a high throughput. All CPU nodes are connected via the InfiniBand interconnect network.

Secondary Interconnection Network

Gigabit Ethernet: 10 Gbps

Gigabit Ethernet is the interconnection network that is most commonly available. For Gigabit

Ethernet, no additional modules or libraries are required. The Open MPI, MPICH

implementations will work over Gigabit Ethernet.

Software Stack

Software Stack is an aggregation of software components that work in tandem to accomplish

a given task. The task can be, to facilitate a user to execute his job/s or to facilitate a system

administrator to manage a system efficiently. In effect, the software will have all the necessary

components to accomplish a given task. There may be multiple components of different

flavors to accomplish a given sub-task. The user/administrator may mix and match these

components depending on his choice. Typically, a user would be interested in preparing his

executable, executing the same with his data sets and visualize the output generated by him.

For accomplishing the same, the user would need to compile his codes, link the codes with

communication libraries, math libraries, numerical algorithm libraries, prepare the

executable, run the same with desired data sets, monitor the progress of his jobs, gathering

the results and visualizing the output.

Typically, a system administrator would be interested in ensuring that all the resources are

optimally utilized. For accomplishing this, he may need some installation tools, tools for

checking the health of all the components, good schedulers, tools to facilitate allocation of

resources to users and monitor the usage of the resources.

PARAM Ganga – User’s Manual

 Page | 15

The software stack provided with this system has a gamut of software components that meets

all the requirements of a user and that of a system administrator. The components of the

software stack are depicted in figure 2.

Amongst these, C-CHAKSHU has been recently developed and deployed by CDAC. We

solicit your feedback on these tools at gangasupport@iitr.ac.in.

C-CHAKSHU: This is a multi-cluster management tool that facilitates the administrator to

efficiently operate the HPC facility. It also enables the user to monitor system metrics relating

to CPU, Storage, Interconnects, File system and Application specific utilization from a single

dashboard. For more information, please follow the link.

http://paramganga.iitr.ac.in:4200/chakshu-front

PARAM Ganga – User’s Manual

 Page | 16

Figure 2 – Software Stack

Functional Areas Components

Base OS CentOS 7.9

Architecture x86_64

Provisioning

Cluster Manager

xCAT 2.16.3

Openhpc (1.3.8)

Monitoring Tools C-CHAKSHU, Nagios, Ganglia, XDMoD

Resource Manager Slurm-20.11.8

I/O Services Lustre Client-x.xx.x

PARAM Ganga – User’s Manual

 Page | 17

High Speed Interconnects Mellanox InfiniBand

Compiler Families GNU (gcc, g++, gfortran)

Intel Compiler (icc, ifort,

icpc)

MPI Families MVAPICH, OpenMPI,

MPICH

PARAM Ganga – User’s Manual

 Page | 18

First Things First

Getting an Account on PARAM Ganga

To begin with, you need to get an account on PARAM Ganga. This is a very easy process.

Please follow the steps given below:

a) Download the ‘User Account Creation Form’ by following the link

https://paramganga.iitr.ac.in/ucform

b) Fill the relevant details.

c) Get the signatures of your Head of the Department and the ‘approving authority’.

Note:

• For IIT Roorkee internal user, users will have the approving authority from IIT

Roorkee. They can submit it to the “PARAM Ganga System Administrator* or email

a scanned copy to.gangasupport@iitr.ac.in.

• For Users who are not from IIT Roorkeewill have to email the scanned copy to

gangasupport@iitr.ac.in, HoD HPC-Tech CDAC will be the approving authority for

them.

d) You will receive an email in your official email ID intimating the creation of your

account along with a temporary password set by the system to your account. You will

also get a copy of this document by email.

e) Log into PARAM Ganga and you will be prompted to change the password. Once you

change the temporary password provided by the system to your own password, you

are ready to use PARAM Ganga.

Info: *

PARAM Ganga, (IIT Roorkee)

Indian Institute of Technology, Roorkee

Email:gangasupport@iitr.ac.in

First login

Whenever the newly created user on PARAM Ganga tries to log in with the User Id and

password (temporary, system generated) provided over the email through PARAM Ganga

support, he/she will next be prompted to create a “new password” of their choice which will

change the temporary, system generated password. This will enable you to keep your account

PARAM Ganga – User’s Manual

 Page | 19

secure. It is recommended that you have a strong password that contains a combination of

alphabets (lower case/upper case), numbers, and a few special characters that you can easily

remember.

 Given next is a screenshot that describes the scenario for “first login”

Your password will be valid for 90 days. On expiry of 90 days period, you will be prompted

to change your password, on attempting to log in. You are required to provide a new

password.

Forgot Password?

There is nothing to panic!! Please raise a ticket regarding this issue and the system

administrators will resolve your problem. Please refer to the section “Getting Help – PARAM

Ganga Support”, described elsewhere in this manual. Follow the GUI based, user-friendly

ticketing system. Please follow the steps given below:

1. Open the PARAM Ganga support site i.e., the ticketing tool by following the link

https://paramganga.iitr.ac.in/support

2. Login with your registered email id, complete name, contact number.

3. There you can raise a ticket to get the password reset.

4. The system admin person will revert with an email for verification.

5. Once acknowledged, the password is reset for the user and an email is sent back for

intimating the same.

6. Then the user can login with the temporary password and can set a new password of

his/her choice.

System Access

Accessing the cluster

The cluster can be accessed through 10 general login nodes, which allows users to login.

PARAM Ganga – User’s Manual

 Page | 20

 You may access login node through ssh.

 The login node is primary gateway to the rest of the cluster, which has a job scheduler

(called Slurm). You may submit jobs to the queue and they will run when the required

resources are available.

 Please do not run programs directly on login node. Login node is use to submit jobs,

transfer data and to compile source code. (If your compilation takes more than a few

minutes, you should submit the compilation job into the queue to be run on the

cluster.)

 By default, two directories are available (i.e., /home and /scratch). These directories

are available on login node as well as the other nodes on the cluster. /scratch is for

temporary data storage, generally used to store data required for running jobs.

Remote Access

Using SSH in Windows

To access PARAM Ganga, you need to “ssh” the login server. PuTTY is the most popular

open source “ssh” client application for Windows, you can download it from

(http://www.putty.org/). Once installed, find the PuTTY application shortcut in your Start

Menu, desktop. On clicking the PuTTY icon, the PuTTY configuration dialog should appear.

Locate the “Host Name or IP Address” input field in the PuTTY configuration screen. Enter

the user’s name along with IP address or Hostname with which you wish to connect.

(e.g. [username]@paramganga.iitr.ac.in -p 4422) for outside access Enter

your password when prompted, and press Enter.

Using SSH in Mac or Linux

Both Mac and Linux systems provide a built-in SSH client, so there is no need to install any

additional package. Open the terminal, connect to SSH server by typing the following

command:

ssh[username]@[hostname]

For example, to connect to the PARAM Ganga Login Node, with the username

user1: ssh user1@paramganga.iitr.ac.in–p 4422

You will be prompted for a password, and then will be connected to the server.

PARAM Ganga – User’s Manual

 Page | 21

Password

How to change the user password?

Use the passwd command to change the password for the user from login node.

Transferring files between local machine and HPC cluster

Users need to have the data and application related to their project/research work on PARAM

Ganga.

To store the data special directories have been made available to the users with the name

“home” the path to this directory is “/home”. Whereas these directories are common to all the

users, a user will get his own directory with their username in /home/ directories where they

can store their data.

/home/<username>/: This directory is generally used by the user to install applications.

However, there is a limit to the storage provided to the users, the limits have been defined

according to quota over these directories, all users will be allotted the same quota by default.

When a user wishes to transfer data from their local system (laptop/desktop) to the HPC

system, they can use various methods and tools.

A user using ‘Windows’ operating system will get methods and tools that are native to

Microsoft Windows and tools that could be installed on your Microsoft windows machine.

Linux operating system users do not require any tool. They can just use the “scp” command

on their terminal, as mentioned below.

Users are advised to keep a copy of their data with themselves, once the project/research work

is completed by transferring the data in from PARAM Ganga to their local system

(laptop/desktop). The command shown below can be used for effecting file transfers (in all

the tools):

scp –P 4422 –r <path to the local data directory><your username>@paramganga.iitr.ac.in:<path to

directory on HPC where to save the data>

Example:

PARAM Ganga – User’s Manual

 Page | 22

Same Command could be used to transfer data from the HPC system to your local system

(laptop/desktop).

scp –r /dir/dir/file username@<cluster IP/Name>:/home/username

 Example:

scp –r <path to directory on HPC><your username>@<IP of local system>:<path to the local data

directory>

scp –r /home/testuser testuser@<local system IP/Name>:/dir/dir/file

Note: The Local system (laptop/desktop) should be connected to the network with which it

can access the HPC system.

To reiterate,

Copying Directory/File from local machine to PARAM Ganga:

To copy a local directory from your Linux system (say Wrf-2.0) to your home directory in

your PARAM Ganga HPC account, the procedure is:

1. From the terminal go to the parent directory using cd command.

user1@mylaptop:~$cd ~/MyData/

2. Under parent directory type ls <& press Enter key>, & notice Wrf-2.0 is there.

 user1@mylaptop: ~$ls Files TempFiles-0.5 Wrf-2.0

3. Begin copy by typing:

user1@mylaptop:~$ scp –P 4422 -r Wrf-2.0 (username)@paramganga.iitr.ac.in < you will be prompted

forpassword; enter your password >

4. Now login to your account as:

user1@mylaptop:~$ ssh (your username)@ paramganga.iitr.ac.in –p 4422
< you will be prompted for password; enter password >

PARAM Ganga – User’s Manual

 Page | 23

[user1@login:~]$

5. Type ls command, you should see Wrf-2.0 directory.

6. While copying from PARAM Ganga to your local machine, follow the same steps by

interchanging source and destination in the scp command. Refer to the generic

copying described earlier.

Tools

MobaXterm (Windows installable application):

It is a third party freely available tool which can be used to access the HPC system and transfer

file to PARAM Ganga system through your local systems (laptop/desktop).

Link to download this tool: https://mobaxterm.mobatek.net/download-home-edition.html

Figure 3 - A snapshot of command using MobaXterm

WinSCP (Windows installable application)

This popular tool is freely available and is used very often to transfer data from Windows

machine to Linux machine. This tool is GUI based which makes it very user-friendly.

PARAM Ganga – User’s Manual

 Page | 24

Link for this tool is: https://winscp.net/eng/download.php

Figure 4 - A snapshot of "scp" tool to transfer file to and from remote computer.

Figure 5 – Enter Captcha/String

Note: Port Used for SFTP connection is 4422 and not 22. Please change it to 4422

PARAM Ganga – User’s Manual

 Page | 25

Running Interactive Jobs

In general, the jobs can be run in an interactive manner or in batch mode. You can run an

interactive job as follows:

The following command asks for a single core on one hour with default amount of memory.

$ srun --nodes=1 --ntasks-per-node=1 --time=01:00:00 --pty bash -i

The command prompt will appear as soon as the job starts. This is how it looks once the

interactive job starts:

srun: job xxxxx queued and waiting for resources srun: job xxxxx has been allocated resources

Where xxxxx is the job id.

Exit the bash shell to end the job. If you exceed the time or memory limits the job will also

abort.

Please note that PARAM Ganga is NOT meant for executing interactive jobs. However, for

the purpose of quickly ascertaining successful run of a job before submitting a large job in

batch (with large iteration counts), this can be used. This can even be used for running small

jobs. The point to be kept in mind is that, since others too would be using this node, it is

prudent not to inconvenience them by running large jobs.

It is a good idea to specify the CPU account name as well (if you face any problems)

$ srun --account=<NAME_OF_MY_ACCOUNT> --nodes=1 --ntasks-per-node=1 -time=01:00:00 -- pty bash -i

PARAM Ganga – User’s Manual

 Page | 26

Managing Jobs through its Lifecycle

PARAM Ganga extensively uses modules. The purpose of module is to provide the

production environment for a given application, outside of the application itself. This also

specifies which version of the application is available for a given session. All applications

and libraries are made available through module files. A user has to load the appropriate

module from the available modules. User can add a particular module in their ~/.bashrc also

if they don’t want to load particular module file for each time after they login.

module avail # This command lists all the available modules

module load compiler/intel/2018.4 # This will load the intel compilers into your environment

module unload compiler/intel/2018.4 # This will remove all environment setting related

to intel-2018 compiler loaded previously

A simple Slurm job script

#!/bin/sh
#SBATCH -N 3 // specifies number of nodes
#SBATCH --ntasks-per-node=48 // specifies cores per node
#SBATCH --time=06:50:20 // specifies maximum duration of run
#SBATCH --job-name=lammps // specifies job name
#SBATCH --error=job.%J.err_node_48 // specifies error file name
#SBATCH --output=job.%J.out_node_48 //specifies output file name
#SBATCH --partition=small // specifies queue name
 cd $SLURM_SUBMIT_DIR // To run job in the directory from where it is submitted
export I_MPI_FABRICS=shm:dapl //For Intel MPI versions 2019 onwards this value must be

shm:ofi mpiexec.hydra -n $SLURM_NTASKS lammps.exe

walltime

Walltime parameter defines as to how long your job will run. The maximum runtime of a job

allowed as per QoS policy. If more than 3 days are required, a special request needs to be

sent to HPC coordinator and it will be dealt with on a case-to-case basis. The command line

to specify walltime is given below.

srun -t walltime <days-hours:mins:seconds>

PARAM Ganga – User’s Manual

 Page | 27

and also, as part of the submit scripts described in the manual. If a job does not get completed

within the walltime specified in the script, it will get terminated.

The biggest advantage of specifying appropriate walltime is that the efficiency of scheduling

improves resulting in improved throughput in all jobs including yours. You are encouraging

to arrive at the appropriate walltime for your job by executing your jobs few times.

NOTE: You are requested to explicitly specify the walltime in your command lines and scripts.

List Partition

sinfo displays information about nodes and partitions(queues). $

sinfo

Figure 6 - Output of sinfo command

Submit the job

We can consider three cases of submitting a job

1. Submitting a simple standalone job

This is a simple submit script which is to be submitted

$ sbatch slurm-job.sh
Submitted batch job 106

PARAM Ganga – User’s Manual

 Page | 28

2. Submit a job that's dependent on a prerequisite job being completed

Consider a requirement of pre-processing a job before proceeding to actual processing.

Pre-processing is generally done on a single core. In this scenario, the actual processing

script is dependent on the outcome of pre-processing script.

Here’s a simple job script. Note that the Slurm -J option is used to give the job a name.

#! /usr/bin/env bash
#SBATCH -p standard #SBATCH -J
simple
sleep 60
Submit the job: $ sbatch simple.sh
Submitted batch job 149

Now we'll submit another job that's dependent on the previous job. There are many ways

to specify the dependency conditions, but the "singleton" method is the simplest. The

Slurm -d singleton argument tells Slurm not to dispatch this job until all previous jobs

with the same name have completed.

$ sbatch -d singleton simple.sh //may be used for first pre-processing on a core and then submitting
Submitted batch job 150
$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 150 standard simple user1 PD 0:00 1 (Dependency) 149 standard simple user1 R 0:17 1 cn001

Once the prerequisite job finishes the dependent job is dispatched.

$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 150 standard simple user1 R 0:31 1 cn001

3. Submit a job with a reservation allocated

Slurm has the ability to reserve resources for jobs being executed by select users and/or

select bank accounts. A resource reservation identifies the resources in that reservation

and a time period during which the reservation is available. The resources which can be

reserved include cores, nodes.

Use the command given below to check the reservation name allocated to your user

account

$ scontrol show reservation

If your ‘user account’ is associated with any reservation the above command will show

you the same. For e.g., the reservation name given is user_11. Use the command given

below to make use of this reservation

PARAM Ganga – User’s Manual

 Page | 29

$ sbatch --reservation=user_11 simple.sh

4. Submitting multiple jobs with minor or no changes (array jobs)

A SLURM job array is a collection of jobs that differs from each other by only a single

index parameter. Job arrays can be used to submit and manage a large number of jobs

with similar settings.

Figure 7 – Snapshot depicting the usage of “Job Array”

N1 is specifying number of nodes you want use for your job. example: N1 -one node, N4 -

four nodes. Instead of tmp here you can use below example script.

#! /bin/bash
#SBATCH -N 3

#SBATCH --ntasks-per-node=48
#SBATCH --error=job.%A_%a.err
#SBATCH --output=job.%A_%a.out
#SBATCH --time=01:00:00
#SBATCH --partition=small
 module load compiler/intel/2018.2.199 cd

/home/guest/Rajneesh/Rajneesh
export OMP_NUM_THREADS=${SLURM_ARRAY_TASK_ID}
/home/guest/Rajneesh/Rajneesh/md_omp

List jobs

Monitoring jobs on SLURM can be done using the command squeue. Squeue is used to view

job and job step information for jobs managed by SLURM.

PARAM Ganga – User’s Manual

 Page | 30

$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 106 standard slurm-job user1 R 0:04 1 cn001

Get job details

scontrol can be used to report more detailed information about nodes, partitions, jobs, job

steps, and configuration. scontrol show node - shows detailed information about compute

nodes.

Figure 8 – scontrol show node displays compute node information

scontrol show partition - shows detailed information about a specific partition

Figure 9 – scontrol show partition displays specific partition details

scontrol show job - shows detailed information about a specific job or all jobs if no job id is

given.

PARAM Ganga – User’s Manual

 Page | 31

Figure 10 – scontrol show job displays specific job information

scontrol update job - changes attributes of submitted job; like time limit, priority (root only)

$ scontrol show job 106
JobId=106 Name=slurm-job.sh
 UserId=user1(1001) GroupId=user1(1001)
 Priority=4294901717 Account=(null) QOS=normal
 JobState=RUNNING Reason=None Dependency=(null)
 Requeue=1 Restarts=0 BatchFlag=1 ExitCode=0:0
 RunTime=00:00:07 TimeLimit=14-00:00:0 TimeMin=N/A
 SubmitTime=2021-01-26T12:55:02 EligibleTime=2021-01-26T12:55:02
 StartTime=2021-01-26T12:55:02 EndTime=Unknown
 PreemptTime=None SuspendTime=None SecsPreSuspend=0
 Partition=small AllocNode:Sid=atom-head1:3526
 ReqNodeList=(null) ExcNodeList=(null)
 NodeList=cn001
 BatchHost=cn001
 NumNodes=1 NumCPUs=2 CPUs/Task=1 ReqS:C:T=*:*:* MinCPUsNode=1

MinMemoryNode=0 MinTmpDiskNode=0

 Features=(null) Gres=(null) Reservation=(null)
 Shared=0 Contiguous=0 Licenses=(null) Network=(null)
 Command=/home/user1/slurm/local/slurm-job.sh

 WorkDir=/home/user1/slurm/local

PARAM Ganga – User’s Manual

 Page | 32

scontrol update job= 106 TimeLimit=04-00:00:0

Suspend a job (root only):

scontrol suspend 135
squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON) 135 small simple.sh user01

S 0:10 1 cn001

Resume a job (root only):

scontrol resume 135
squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON) 135 small simple.sh

user01 R 0:13 1 cn001

Kill a job. Users can kill their own jobs; root can kill any job.

$ scancel 135
$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

Hold a job:

$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 139 small simple user01 PD 0:00 1 (Dependency)
138 small simple user01 R 0:16 1 cn001
$ scontrol hold 139
$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
139 small simple user01 PD 0:00 1 (JobHeldUser) 138 small simple user01 R

0:32 1 cn001

Release a job:

$ scontrol release 139
$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 139 small simple user01 PD 0:00 1 (Dependency)
 138 small simple user01 R 0:46 1 cn001

PARAM Ganga – User’s Manual

 Page | 33

Addressing Basic Security Concerns

Your account on PARAM Ganga is ‘private to you’. You are responsible for any actions

emanating from your account. It is suggested that you should never share the password to

anyone including your friends and system administrators!!

Please note that, by default, a new account created on PARAM Ganga is readable by everyone

on the system. The following simple commands will make your account adequately safe.

chmod 700 /home/$user
! will ensure that only yourself can read, write and

! execute files in your home directory

chmod 750 /home/$user
! will enable yourself and the members of your

! group to read and execute files in your home

! directory

chmod 755 /home/$user
! will enable yourself, your group members and

! everyone else to read and execute files in your

! directory

chmod 777 /home/$user
! will enable EVERY ONE on the system to read,

! write and execute files in your home directory.

! This is a sort of ‘free for all’ situation. This

! should be used very judiciously

More about Batch Jobs (SLURM)

SLURM (Simple Linux Utility for Resource Management) is a workload manager that

provides a framework for job queues, allocation of compute nodes, and the start and execution

of jobs.

It is important to note:

PARAM Ganga – User’s Manual

 Page | 34

• Compilations are done on the login node. Only the execution is scheduled via SLURM

on the compute nodes

• Upon Submission of a Job script, each job gets a unique Job Id. This can be obtained

from the ‘squeue’ command.

• The Job Id is also appended to the output and error filenames.

• All examples of modules are for illustrations only, please refer to the cluster for actual

module name.

Parameters used in SLURM job script

The job flags are used with SBATCH command. The syntax for the SLURM directive in a

script is "#SBATCH <flag>". Some of the flags are used with the srun and salloc commands.

Resource Flag Syntax Description

partition --partition=partition name Partition is a queue for jobs.

time --time=01:00:00 Time limit for the job.

nodes --nodes=2 Number of compute nodes for the

job.

cpus/cores --ntasks-per-node=8 Corresponds to number of cores on

the compute node.

resource

feature

--gres=gpu:2 Request use of GPUs on compute

nodes

account --account=group-slurmaccount Users may belong to groups or

accounts.

job name --job-name="lammps" Name of job.

output file

--output=lammps.out Name of file for stdout.

-w, --nodelist Request a specific list of hosts. --mail-

type= Notify user by email when certain event types

occur. Valid

Resource Flag Syntax Description

 type values are NONE, BEGIN, END,

FAIL, REQUEUE, ALL

TIME_LIMIT, TIME_LIMIT_90

(reached 90 percent of time limit),

TIME_LIMIT_80 (reached 80

percent of time limit), and

TIME_LIMIT_50 (reached 50

percent of time limit). Multiple type

values may be specified in a

comma separated list

PARAM Ganga – User’s Manual

 Page | 35

email address --mail-user username@cdac.in User's email address

User to receive email notification of

state changes as defined by --mail-type

access --exclusive Exclusive access to compute

nodes.

 The job allocation cannot share nodes

with other running jobs

Script for a Sequential Job

#!/bin/bash
#SBATCH -N 4 // number of nodes
#SBATCH --ntasks-per-node=1 // number of cores per node
#SBATCH --error=job.%J.err // name of output file
#SBATCH --output=job.%J.out // name of error file
#SBATCH --time=01:00:00 // time required to execute the program #SBATCH --partition=small// specifies

queue name (standard is the default partition if you do not specify any partition job will be submitted using

default partition). For other partitions you can specify hm or gpu

// To load the module //
 module load compiler/intel/2018.2.199

cd <Path of the executable>

/home/cdac/a.out (Name of the executable).

Script for a Parallel OpenMP Job

#!/bin/bash
#SBATCH –N 4 // Number of nodes
#SBATCH --ntasks-per-node=48 // Number of cores per node
#SBATCH --error=job.%J.err // Name of output file
#SBATCH --output=job.%J.out // Name of error file

PARAM Ganga – User’s Manual

 Page | 36

#SBATCH --time=01:00:00 // Time take to execute the program #SBATCH -partition=small// specifies queue

name(standard is the default partition if you does not specify any partition job will be submitted using default

partition) other partitions
You can specify hm and gpu

// To load the module //

module load compiler/intel/2018.4

cd <path of the executable> or
cd $SLURM_SUBMIT_DIR //To run job in the directory from where it is submitted
 export OMP_NUM_THREADS=48 (Depending upon your requirement you can change number of

threads. If total number of threads per node is more than 48, multiple threads will share core(s) and

performance may degrade)
/home/cdac/a.out (Name of the executable)

Script for Parallel Job – MPI (Message Passing Interface)

#!/bin/sh

#SBATCH -N 16 // Number of nodes
#SBATCH --ntasks-per-node=48 // Number of cores per node
#SBATCH --time=06:50:20 // Time required to execute the program
#SBATCH --job-name=lammps // Name of application
#SBATCH --error=job.%J.err_16_node_48 // Name of the output file
#SBATCH --output=job.%J.out_16_node_48 // Name of the error file #SBATCH --partition=large //

Partition or queue name

// To load the module //
module load compiler/intel/2018.4

// Below are Intel MPI specific settings // export

I_MPI_FALLBACK=disable

export I_MPI_FABRICS=shm:dapl
export I_MPI_DEBUG=9 // Level of MPI verbosity //
 cd

$SLURM_SUBMIT_DIR or
cd /home/manjuv/LAMMPS_2018COMPILER/lammps-22Aug18/bench
// Command to run the lammps in Parallel //

time mpiexec.hydra -n $SLURM_NTASKS -genv OMP_NUM_THREADS 1
/home/manjuv/LAMMPS_2018COMPILER/lammps-22Aug18/src/lmp_intel_cpu_intelmpi -in in.lj

Script for Hybrid Parallel Job – (MPI + OpenMP)

#!/bin/sh

PARAM Ganga – User’s Manual

 Page | 37

#SBATCH -N 16 // Number of nodes
#SBATCH --ntasks-per-node=48 // Number of cores for node
#SBATCH --time=06:50:20 // Time required to execute the program
#SBATCH --job-name=lammps // Name of application
#SBATCH --error=job.%J.err_16_node_48 // Name of the output file
#SBATCH --output=job.%J.out_16_node_48 // Name of the error file
#SBATCH --partition=large // Partition or queue name

cd $SLURM_SUBMIT_DIR

// To load the module //

module load compiler/intel/2018.2.199

// Below are Intel MPI specific settings // export

I_MPI_FALLBACK=disable
 export I_MPI_FABRICS=shm:dapl

export I_MPI_DEBUG=9 // Level of MPI verbosity //
export OMP_NUM_THREADS=24 //Possibly then total no. of MPI ranks will be = (total no. of cores, in this

case 16 nodes x 48 cores/node) divided by (no. of threads per MPI rank i.e. 24)

// Command to run the lammps in Parallel //
 time mpiexec.hydra -n 32 lammps.exe -in in.lj

I am familiar with PBS/ TORQUE. How do I migrate to SLURM?

Environment Variables PBS/Torque SLURM

Job Id $PBS_JOBID $SLURM_JOBID

Submit Directory $PBS_JOBID $SLURM_SUBMIT_DIR

Node List $PBS_NODEFILE $SLURM_JOB_NODELIST

Job Specification PBS/Torque SLURM

Script directive #PBS #BATCH

Job Name -N [name] --job-name=[name] OR -J

[name]

Node Count -1 nodes=[count] --nodes=[min[-max]] OR -

N

CPU count -1 ppn=[count] ---ntasks-per-node=[count]

PARAM Ganga – User’s Manual

 Page | 38

[min[-max]]

Preparing Your Own Executable

The compilations are done on the login node, whereas the execution happens on the compute

nodes via the scheduler (SLURM).

Note: The Compilation and execution must be done with same libraries and matching version to avoid unexpected

results.

Steps:

1. Load required modules on the login node.

2. Do the compilation.

3. Open the job submission script and specify the same modules to be loaded as used while

compilation.

4. Submit the script.

The directory contains a few sample programs and their sample job submission scripts. The

compilation and execution instructions are described in the beginning of the respective files.

CPUs Per Task --cpus-per-task=[count]

Memory Size -1 mem-[MB] --mem=[MB] OR –

mem_per_cpu=[MB]

Wall Clock Limit -1 walltime=[hh:mm:ss] --time=[min] OR –

mem_per_cpu=[MB]

Node Properties -1

nodes=4.ppn=8:[property]

--constraint=[list]

Standard Output File -o [file_name] --output=[file_name] OR -o

[file_name]

Standard Error File -e [file_name] --error=[file_name] OR -e

{file_name]

Combine stdout/stderr -j oe (both to stdout) (This is default if you do

not specify –error)

Job Arrays -t [array_spec] --array=[array_spec] OR -a

[array_spec]

Delay Job Start -a [time] --begin=[time]

PARAM Ganga – User’s Manual

 Page | 39

The user can copy the directory to his/her home directory and further try compiling and

executing these sample codes. The command for copying is as follows:

cp -r /home/apps/Docs/samples/ ~/.

1. mm.c - Serial Version of Matrix-Matrix Multiplication of two NxN matrices

2. mm_omp.c - Basic OpenMP Version of Matrix-Matrix Multiplication of two NxN

matrices

3. mm_mpi.c - Basic MPI Version of Matrix-Matrix Multiplication of two NxN

matrices

4. mm_acc.c - OpenAcc Version of Matrix-Matrix Multiplication of two NxN

matrices

5. mm_blas.cu - CUDA Matrix Multiplication program using the cuBlas library.

6. mm_mkl.c - MKL Matrix Multiplication program.

7. laplace_acc.c - OpenACC version of the basic stencil problem.

It is recommended to use the intel compilers since they are better optimized for the hardware.

Compilers

Compilers Description Versions Available

gcc/gfortran
GNU Compiler

(C/C++/Fortran)

4.8.5, 5.5.0, 7.3.0, 8.3.0, 9.3.0

icc/icpc/ifort
Intel Compilers

(C/C++/Fortran)

16.x, 17.x, 18.x, 19.x

mpicc/mpicxx/mpif90
Intel-MPI with

GNU compilers

(C/C++/Fortran)

16.x, 17.x, 18.x, 19.x

mpiicc/mpiicpc/mpiifort
Intel-MPI with

Intel compilers

(C/C++/Fortran)

16.x, 17.x, 18.x, 19.x

nvcc
CUDA C

Compiler

7.5, 8.0, 9.0, 9.2, 10.0, 10.1, 10.2

PARAM Ganga – User’s Manual

 Page | 40

pgcc/pgc++/pgfortran
PGI Compiler

(C/C++/Fortran)

19.4, 19.10

Optimization Flags

Optimization flags are meant for uniprocessor optimization, wherein, the compiler tries to

optimize the program, on the basis of the level of optimization. The optimization flags may

also change the precision of output produced from the executable. The optimization flags can

be explored more on the respective compiler pages. A few examples are given below.

Intel: -O3 –xHost
GNU: -O3
PGI: -fast

Given next is a brief description of compilation and execution of the various types of

programs. However, for certain bigger applications, loading of additional dependency

libraries might be required.

C Program:

Setting up of environment: module load compiler/intel/2018.2.199 compiler/gcc/7.3.0
compilation: icc -O3 -xHost <<prog_name.c>> Execution: ./a.out

C + OpenMP Program:

Setting up of environment: module load compiler/intel/2018.2.199 compiler/gcc/7.3.0
Compilation: icc -O3 -xHost -qopenmp <<prog_name.c>> Execution: ./a.out

C + MPI Program:

Setting up of environment: module load

compiler/intel/2018.2.199compiler/gcc/7.3.0 Compilation: mpiicc -O3 -xHost

<<prog_name.c>> Execution: mpirun -n <<num_procs>> ./a.out

C + MKL Program:

Setting up of environment: module load compiler/intel/2018.2.199

compiler/gcc/7.3.0
Compilation: icc -O3 -xHost -mkl <<prog_name.c>> Execution: ./a.out

CUDA Program:

PARAM Ganga – User’s Manual

 Page | 41

Setting up of environment:
module load compiler/cuda/10.1 compiler/gcc/7.3.0

Example (1)
Compilation: nvcc -arch=sm_70 <<prog_name.cu>>
Execution: ./a.out
Note: The optimization switch -arch=sm_70 is intended for Volta V100 GPUs and is valid for CUDA 9 and

later. Similarly, older versions of CUDA have compatibility with lower versions of GCC only. Accordingly,

appropriate modules of GCC must be loaded.

Example (2)
Compilation: nvcc -arch=sm_70 /home/apps/Docs/samples/mm_blas.cu lcublas
Execution: ./a.out

CUDA + OpenMP Program:

Setting up of environment: module load compiler/cuda/10.1

compiler/gcc/7.3.0

Example (1)
Compilation: nvcc -arch=sm_70 -Xcompiler="-fopenmp" -lgomp
/home/apps/Docs/samples/mm_blas_omp.cu -lcublas
Execution: ./a.out

Example (2)
Compilation: g++ -fopenmp /home/apps/Docs/samples/mm_blas_omp.c -
I/opt/ohpc/pub/apps/cuda/cuda-10.1/include -
L/opt/ohpc/pub/apps/cuda/cuda-10.1/lib64 -lcublas Execution: ./a.out

OpenACC Program:

Setting up of environment: module load compiler/pgi/19.10

compiler/cuda/10.1

Compilation for GPU: pgcc -acc -fast -Minfo=all -ta=tesla:cc70,managed
/home/apps/Docs/samples/laplace_acc.c
Execution:./a.out

Compilation for CPU: pgcc -acc -fast -Minfo=all -ta=multicore -
tp=skylake /home/apps/Docs/samples/laplace_acc.c Execution:./a.out

Job Submission on Scheduler (SLURM)

A sample job submission scripts for each of the sample programs is given. Upon

completion/termination of the execution, two files (output and error) are generated.

A few sample commands for SLURM are as follows:

sinfo Lists out the status of resources in the system

PARAM Ganga – User’s Manual

 Page | 42

squeue Lists out the Job information in the system

sbatch
<<job_script>>

Submitting a job to the scheduler

scancel <<job_name>>
Delete a job

Spack

Introduction

Spack automates the download-build-install process for software - including dependencies -

and provides convenient management of versions and build configurations. It is designed to

support multiple versions and configurations of software on a wide variety of platforms and

environments. It is designed for large supercomputing centers, where many users and

application teams share common installations of software on clusters with exotic

architectures, using libraries that do not have a standard ABI. Spack is non-destructive:

installing a new version does not break existing installations, so many configurations can

coexist on the same system.

Getting Started

On your login node command prompt execute below commands:

$ module load spack- To load SPACK module and setting up environment for SPACK.

Kindly see the above screenshot and source below line including initial dot.

PARAM Ganga – User’s Manual

 Page | 43

$. home/apps/spack/share/spack/setup-env.sh

To Use Pre-Installed Applications from Spack

spack find

The spack find command is used to query installed packages on PARAM Ganga. Note that

some packages appear identical with the default output. The -l flag shows the hash of each

package, and the -f flag shows any non-empty compiler flags of those packages.

spack load application name

The easiest way is to use spack load<application name@version>

PARAM Ganga – User’s Manual

 Page | 44

To know the Pre-Loaded Application/Compliers

$ spack find --loaded
==> 15 loaded packages
-- linux-centos7-cascadelake / gcc@11.2.0 ----------------------- fftw@3.3.10 libedit@3.1-20210216
libpciaccess@0.16 numactl@2.0.14 openssl@1.1.1l
gromacs@2021.3 libevent@2.1.12 libxml2@2.9.12 openmpi@4.1.1 xz@5.2.5
hwloc@2.6.0 libiconv@1.16 ncurses@6.2 openssh@8.7p1 zlib@1.2.11

To install new application

First check the available compilers in Spack with below command:

Spack compilers

Spack manages a list of available compilers on the system, detected automatically from the

user’s PATH variable. The Spack compilers command is an alias for the command Spack

compiler list.

To check the compliers available in the system

$ spack compiler list
==> Available compilers
-- gcc centos7-x86_64 --- gcc@11.2.0 gcc@8.3.0 gcc@4.8.5

-- intel centos7-x86_64 --- intel@2021.4.0

-- oneapi centos7-x86_64 -- oneapi@2021.4.0

Check if application is available in Spack repo with command-

spack list

The spack list command shows available packages.

PARAM Ganga – User’s Manual

 Page | 45

The Spack list command can also take a query string. Spack automatically adds wildcards to

both ends of the string, or you can add your own wildcards.

Before installing application check its spec with command Spack

install

Below is an example of installation of package using Spack:

spack install gromacs@2020.5 +cuda~mpi+blas %intel ^intel-mkl

Above command will install gromacs version 2020.5 with blas and cuda support and

without MPI support. For blas there are multiple providers like OpenBLAS, Intel MKL,

amdblis, and essl, ^intel-mkl will tell spack to use intel-mkl for blas routines.

Operators in Spack

% to select compiler out of available compilers

^ to use variant of package

@ to define the version number of packages to be installed.

PARAM Ganga – User’s Manual

 Page | 46

+ to enable variant for package ~ to

disable variant for package

Uninstalling Packages

Earlier we installed many configurations each of zlib. Now we will go through and uninstall

some of those packages that we didn’t really need.

$ spack uninstall zlib %gcc@6.5.0
 (type: y)

Using Environments

Spack has an environment feature in which you can group installed software. You can

install software with different versions and dependencies in each environment and can

change software to use at once by changing environments. You can create a Spack

environment by spack env create command. You can create multiple environments by

specifying different environment names here.

spack env create myenv

To activate the created environment, type spack env activate. Adding -p option will display

the current activated environment on your console. Then, install software you need to the

activated environment.

spack env activate -p myenv myenv] [username@es1 ~]$ spack

install xxxxx

You can deactivate the environment by spack env deactivate. To switch to another

environment, type spack env activate to activate it.

[myenv] [username@es1 ~]$ spack env deactivate [username@es1 ~]$

Use spack env list to display the list of created Spack environments.

[username@es1 ~]$ spack env list
==> 2 environments myenv

another_env

PARAM Ganga – User’s Manual

 Page | 47

Packaging (For Application developers)

Spack packages are installation scripts, which are essentially recipes for building the

software.

They define properties and behavior of the build, such as:

• where to find and how to retrieve the software.

• its dependencies.

• options for building the software from source; and build commands.

Once we’ve specified a package’s recipe, users of our recipe can ask Spack to build the

software with different features on any of the supported systems. Please refer Packaging

Guide — Spack 0.17.0 documentation for detailed understanding of the Spack packaging.

Example Creating Own Package:

In below spec file we have used Linewidth an IISc developed code. Please see the bold

lines for comments related to preceding lines in the spec file of spack package named

IiscLinewidth:

Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers.

See the top-level COPYRIGHT file for details.

SPDX-License-Identifier: (Apache-2.0 OR MIT) import os
import platform import sys
import llnl.util.tty as tty from spack import * class

IiscLinewidth(MakefilePackage):
 """
 Linewidth developed by IISC Banglore.
 """
 homepage = ""
 #Url for homepage
 url = "file://{0}/linewidth.tar.gz".format(os.getcwd())
 #Url for source code manual_download = True
 #If source code is not available in public domain version('1',
sha256='7215f6765e5f5eddfde5f0c67a5bbdef5960607f3e199a609ef5619278ec8a66', preferred=True)

PARAM Ganga – User’s Manual

 Page | 48

 #You can add different versions for you package.
 variant('mpi', default=True, description='Install with MPI support') variant('openmp', default=True,
description='Install with OpenMP support')
 #Variant gives flexibility to users for changing parameter before compilation.
 depends_on('gmake', type='build') depends_on('mpi',

when='+mpi') depends_on('hdf5+fortran+hl+mpi')

depends_on('intel-mkl') depends_on('py-h5py')
 depends_on('py-matplotlib', type=('build', 'run'))
 #Depend clause used to specify dependencies for your code.

 @property def build_targets(self):
 targets = [
 #'--directory=SRC',
 '--file=Makefile',
 'LIBS={0} {1} '.format(self.spec['intel-mkl'].libs.ld_flags,
self.spec['hdf5'].libs.ld_flags), 'HDFINCFLAGS={0}'.format(self.spec['hdf5'].prefix.include),
 'HDF5_HOME={0}'.format(self.spec['hdf5'].prefix),
 'FC={0}'.format(self.spec['mpi'].mpifc)
]
 return targets def install(self, spec, prefix):
 mkdirp(prefix.bin)
 install('linewidth', prefix.bin) ####
#This code uses Makefile for building application. We can define some properties
to make changes in Makefile, changing parameter in Makefile at compile time.

Sample steps taken for creating linewidth application recipe for Spack

1. Source code

Source code of Linewidth was not available through public repo like GitHub, so

needed to import OS package.

 os.getcwd() - expects the source tar present in current working directory.

cha256- to check for sha256 checksum we added same in version clause and for

place holder we have given version as 1. manual download = True refers to spack

will not try to download source code for the package.

 name- make sure that name of tar file is same as used inside package recipe

2. Variant- User can control behavior of application being built through this clause. Ex-

To enable MPI support we have defined it to be true by default.

3. depends_on()- This clause defines all dependencies required to build the given

application.

 Ex- In linewidth example we have used Intel-MKl and HDF5.

PARAM Ganga – User’s Manual

 Page | 49

4. @property - With this decorator we can define some properties for build system like

edit, build, install.

5. property build_targets - Defines logic of building source for native platform.

6. property install - Defines install procedure to be used after building source code.

 Ex- In our example we define prefix path

Sample SLURM script for OpenMP applications/programs. to use

Spack

#!/bin/bash
#SBATCH --nodes=1
#SBATCH -p hm ##
#SBATCH --exclusive
#SBATCH -t 1:00:00

echo "SLURM_JOBID="$SLURM_JOBID
echo "SLURM_JOB_NODELIST"=$SLURM_JOB_NODELIST

echo "SLURM_NNODES"=$SLURM_NNODES echo
"SLURM_NTASKS"=$SLURM_NTASKS ulimit -s unlimited

ulimit -c unlimited
export OMP_NUM_THREADS=4 ### Maximum number of threads= Number of physical core

#To load necessary application/compiler through spack module load spack
export SPACK_ROOT=/home/apps/spack .
$SPACK_ROOT/share/spack/setup-env.sh spack load intel-

mpi@2019.10.317 /6icwzn3 spack load intel-

mkl@2020.4.304
spack load intel-oneapi-compilers@2021.4.0 spack load gcc@11.2.0

(time <executable_path>)

Sample SLURM script for MPI applications/programs to use Spack

#!/bin/bash
#SBATCH --nodes=2
#SBATCH -p hm ## gpu/standard
#SBATCH --exclusive
#SBATCH -t 1:00:00

echo "SLURM_JOBID="$SLURM_JOBID echo

"SLURM_JOB_NODELIST"=$SLURM_JOB_NODELIST echo

"SLURM_NNODES"=$SLURM_NNODES echo

"SLURM_NTASKS"=$SLURM_NTASKS ulimit -s unlimited

ulimit -c unlimited

PARAM Ganga – User’s Manual

 Page | 50

#To load necessary application/compiler through spack module load spack
export SPACK_ROOT=/home/apps/spack .
$SPACK_ROOT/share/spack/setup-env.sh spack load intel-
mpi@2019.10.317 /6icwzn3 spack load intel-
mkl@2020.4.304
spack load intel-oneapi-compilers@2021.4.0 spack load gcc@11.2.0
(time mpirun -np $SLURM_NTASKS <executable_path>)

PARAM Ganga – User’s Manual

 Page | 51

Job Scheduling on PARAM Ganga

Scheduler

PARAM Ganga has Slurm-20.11.08 (open source) as a workload manager for HPC facility.

Slurm is a widely used batch scheduler in top500 HPC list. PARAM Ganga consists of three

types of compute nodes: i.e., CPU only (192 GB) nodes, High memory (768 GB) nodes and

Nvidia GPU (192 GB) enabled.

Following partitions/queues have been defined for different requirements-

1. small, debug, medium, large : CPU, High memory Jobs

2. gpu: GPU and CPU jobs

3. highmemory: High memory intensive jobs

All users can submit to the standard partition. The standard partition contains CPU, high

memory and GPU nodes. GPU partition contains only gpu nodes. If user wants to submit a

job only on gpu nodes, he/she can use gpu partition. If user wants to submit a job only on

high memory, he/she can use hm partition.

Note: User has to specify #SBATCH –gres=gpu:1/2 in their job script if user wants to use 1 or 2 GPU cards on

GPU nodes

sinfo

This Slurm command is used to view available partition and node information on the cluster.

Figure 11 – sinfo Command

PARAM Ganga – User’s Manual

 Page | 52

PARAM Ganga SLURM Partitions and QoS

NAME Min

Core/gpu

Max

core/gpu

Max

Walltime

(HH:MM:SS)

Max

Submit

jobs per

user

Max

Running

Job per

user

Overall

Running

jobs

debug 128 256 01:00:00 3 2 15

small 128 512 03-00:00:00 5 4 40

medium 526 4048 24:00:00 2 2 2

large 4056 10146 24:00:00 2 2 2

highmemory 24 3696 24:00:00 5 4 15

gpu 1GPU 40 GPU 24:00:00 5 4 15

mini 1 48 05-00:00:00 5 4 40

For Submitting the job

Partition Name Srun command

(x=number of nodes)

Sbatch command

(x=number of nodes)

Script

DEBUG srun -Nx -p debug -pty

/bin/bash
sbatch -Nx -p debug

samplescript.sh

#SBATCH -

partition=debug

SMALL srun -Nx -p small --

pty /bin/bash
sbatch -Nx -p small

samplescript.sh

#SBATCH -

partition=small

MEDIUM srun -Nx -p medium -

pty /bin/bash
sbatch -Nx -p medium

samplescript.sh

#SBATCH -

partition=medium

LARGE srun -Nx -p large --

pty /bin/bash
sbatch -Nx -p large

samplescript.sh
#SBATCH -

partition=large

PARAM Ganga – User’s Manual

 Page | 53

HIGHMEMORY srun -Nx -p

highmemory --

pty /bin/bash

sbatch -Nx -p

highmemory

samplescript.sh

#SBATCH -

partition=highmemory

GPU srun -Nx --gres=gpu:2

p gpu --pty

/bin/bash

sbatch –Nx -

gres=gpu:2 -p gpu

samplescript.sh

#SBATCH -

partition=gpu

#SBATCH -

gres=gpu:number of

gpu

MINI srun -Nx -p mini -pty

/bin/bash

sbatch -Nx -p mini

samplescript.sh

#SBATCH -

partition=mini

NOTE: For gpu partition use --gres=gpu:number of gpu

debug

The debug limit is intended for testing, not for production throughput. Users are limited to

minimum 128 core and maximum 256 cores per job. The maximum walltime per job will

be 1 hour and only 3 jobs per user (2 running and 1 job in queue) are allowed for this

partition. Users may also wish to compile their codes on this partition.

small

This partition has a maximum run time of 72 hours (3 days). This will be the default

partition in case if no partition name is specified in the job script. It is designed to run small

jobs with limit of minimum 128 cores and maximum 512 cores. At given instance

maximum 35 jobs can be in running state and only 3 jobs per user are allowed (4 running

and 5 in queue).

medium

The medium partition has a maximum run time of 24 hours (1 day). The minimum cores

required for this partition are 526 and the maximum cores can be up to 4048 cores per job.

Only 2 jobs can be in running state with this partition. Each user can submit maximum 2

jobs in this partition (2 running).

PARAM Ganga – User’s Manual

 Page | 54

large

The large partition has maximum core limit with combination of cpu and hm cores. The

users have walltime limit of 24 hours (1 day) with 4056 minimum and maximum 10146

cores. Only one job is allowed per user.

highmemory

This partition is particularly for memory intensive jobs. Each high memory (hm) node has

768 GB RAM. Minimum 24 cores are need to run job with this partition. 24 hours (1 day) is

the maximum walltime with core limit of 3720 cores per job. Users can have 3 running jobs

and 1 in queue for this partition.

gpu

The gpu partition have up to 10 jobs in running state with limit of minimum 1 gpu and

maximum 40 gpus with walltime of 24 hrs (1 day). Each user can submit up to 5 jobs (3

jobs running and 2 in queue).

mini

This partition has a maximum run time of 120 hours (5 days). It is designed to run small

jobs with limit of minimum 1 core and maximum 48 cores. At given instance maximum 4

jobs can be in running state and only 5 jobs per user are allowed (4 running and 1 in queue).

walltime

Walltime parameter defines as to how long your job will run. The maximum runtime of a job

allowed as per the QoS Policy. If more than 4 days are required, a special request needs to be

sent to HPC coordinator and it will be dealt with on a case-to-case basis. The command line

to specify walltime is given below.

srun -t walltime <days-hours:mins:seconds>

and also, as part of the submit scripts described in the manual. If a job does not get completed

within the walltime specified in the script, it will get terminated.

The biggest advantage of specifying appropriate walltime is that the efficiency of scheduling

improves resulting in improved throughput in all jobs including yours. You are encouraging

to arrive at the appropriate walltime for your job by executing your jobs few times.

Note: Default wall time is 2 hours, you have to specify wall time if you want the job to run

more than 2 hours.

PARAM Ganga – User’s Manual

 Page | 55

NOTE: You are requested to explicitly specify the walltime in your command lines and scripts.

Per user

• Every user will have quota of 48G of soft limit and 50G of hard limit with grace period

of 7 days in HOME file system (/home) and 190G of soft limit and 200G of hard limit

with grace period of 14 days in SCRATCH file system

• Users are recommended to copy their execution environment and input files to scratch

file system (/scratch/<username>) during job running and copy output data back to

HOME area

• File retention policy has been implemented on Luster storage for the "/scratch" file system.

As per the policy, any files that have not been accessed for the last 3 months will be deleted

permanently

• Three QoS (Quality of services) are created according to different job sizes and wall

time. Resource limits for users are defined as per below QoS policy

Scheduling Type

PARAM Ganga has been configured with Slurm’s backfill scheduling policy. It is good for

ensuring higher system utilization; it will start lower priority jobs if doing so does not delay

the expected start time of any higher priority jobs. Since the expected start time of pending

jobs depends upon the expected completion time of running jobs, reasonably accurate time

limits are important for backfill scheduling to work well.

Job Priority

The job's priority at any given time will be a weighted sum of all the factors that have been

enabled in the slurm.conf file. Job priority can be expressed as:

Job_priority =

 (PriorityWeightAge) * (age_factor) +

 (PriorityWeightFairshare) * (fair-share_factor) +

 (PriorityWeightJobSize) * (job_size_factor) +

 (PriorityWeightPartition) * (partition_factor) +

 (PriorityWeightQOS) * (QOS_factor) +

 SUM(TRES_weight_cpu * TRES_factor_cpu,

 TRES_weight_<type> * TRES_factor_<type>,

 ...)

All of the factors in this formula are floating point numbers that range from 0.0 to 1.0. The

weights are unsigned, 32-bit integers. The job's priority is an integer that ranges between 0

and 4294967295. The larger the number, the higher the job will be positioned in the queue,

and the sooner the job will be scheduled. A job's priority, and hence its order in the queue,

PARAM Ganga – User’s Manual

 Page | 56

can vary over time. For example, the longer a job sits in the queue, the higher its priority will

grow when the age weight is non-zero.

Age Factor: The age factor represents the length of time a job has been sitting in the queue

and eligible to run. Current value for Age factor is 10000.

Job Size Factor: The job size factor correlates to the number of nodes or CPUs the job has

requested. Current value for Job Size factor is 1000.

Partition Factor: Each node partition can be assigned an integer priority. The larger the

number, the greater the job priority will be for jobs that request to run in this partition. Current

value for partition factor is 15000.

Quality of Service (QoS) Factor: Each QoS can be assigned an integer priority. The larger the

number, the greater the job priority will be for jobs that request this QoS. Current value for

QoS factor is 100000.

Fair-share Factor: The fair-share component to a job's priority influences the order in which

a user's queued jobs are scheduled to run based on the portion of the computing resources

they have been allocated and the resources their jobs have already consumed. Current value

for fair-share factor is 100000.

Figure 12 - Listing the shares of association to a cluster

ACCOUNTING

Accounting system tracks and manages HPC resource usage. As jobs are completed or

resources are utilized, accounts are charged and resource usage is recorded. Accounting

policy is like a bank/Credit System, where each department can be allocated with some

predefined budget on a quarterly basis for CPU usage. As and when the resources are utilized,

the amount will be deducted. The allocation will be reset at end of every quarter.

sacct

This command can report resource usage for running or terminated jobs including individual

tasks, which can be useful to detect load imbalance between the tasks.

sstat

This command can be used to status only currently running jobs.

PARAM Ganga – User’s Manual

 Page | 57

sreport

This command can be used to generate reports based upon all jobs executed in a particular

time interval.

Standard priority queue

CPU xp/minute/core ! Useful for charging calculations GPU/minute/accelerator ! Useful for

charging calculations

High Priority queue

CPU xx/minute/core ! Useful for charging calculations GPU/minute/accelerator ! Useful for

charging calculations

Storage Policy

FileSystem Size Quota Access Retention Period

/home ~576 TiB 500GB RW Unlimited

/scratch ~1728 TiB 1TB RW 60 days

Debugging Your Codes

Introduction

A debugger or debugging tool is a computer program that is used to test and debug other

programs (the "target" program).

When the program "traps" or reaches a preset condition, the debugger typically shows the

location in the original code if it is a source-level debugger or symbolic debugger, commonly

now seen in integrated development environments.

Debuggers also offer more sophisticated functions such as running a program step by step

(single-stepping or program animation), stopping (breaking) (pausing the program to

examine the current state) at some event or specified instruction by means of a breakpoint,

and tracking the values of variables.

PARAM Ganga – User’s Manual

 Page | 58

Some debuggers have the ability to modify program state while it is running. It may also be

possible to continue execution at a different location in the program to bypass a crash or

logical error.

Basics How Tos

Compilation

Compilation with a separate flag ‘-g’ is required since the program needs to be linked with

debugging symbols.

gcc -g <program_name.c>

e.x. gcc -g random_generator.c

Running with gdb

gdb is a command line utility available with almost all Linux systems’ compiler collection

packages.

gdb <executable.out>

e.x. gdb a.out

Basic gdb Commands (to be executed in gdb command line window)

Start:

Starts the program execution and stops at the first line of the main procedure. Command line

arguments may be provided if any.

Run:

Starts the program execution but does not stop. It stops only when any error or program trap

occurs. Command line arguments may be provided if any.

Help:

Prints the list of command available. Specifying ‘help’ followed by a command (e.x. ‘help

run’) displays more information about that command.

File <filename>:

Loads a binary program that is compiled with ‘-g’ flag for debugging.

List [line_no]:

Displays the source code (nearby 10 lines) of the program in execution where the execution

stopped. If ‘line_no’ is specified, it display the source code (10 lines) at the specified line.

PARAM Ganga – User’s Manual

 Page | 59

Info:

Displays more information about the set of utilities and saved information by the debugger.

For example; ‘info breakpoints’ will list all the breakpoints, similarly ‘info watchpoints’ will

list all the watch points set by the user while debugging their programs.

Print <expression>:

Prints the values of variables / expression at the current running instance of the program.

Step N:

Steps the program one (or ‘N’) instructions ahead or till the program stops for any reason.

Steps through each and every instruction even if it is function call (only function or

instruction compiled with debugging flags).

next:

This command also steps through the instructions of the program. Unlike ‘step’ command, if

the current source code line calls a subroutine, this command does not enter the subroutine,

but instead steps over the call, if effect treating it as a single source line.

Continue:

This command continues the stopped program till the next breakpoint has occurred or till the

end of the program. It is used to continue from a paused/debug point state.

Break [sourcefile:]<line_no> [if condition]:

Stops the program at the specified line number and provides a breakpoint for the user. Specific

source code file and breakpoint based on a condition can also be set for specific cases. You

can also view the list of breakpoints set, by using the ‘info breakpoints’ command.

watch <expression>:

A watchpoint means break the program or stop the execution of the program when the value

of the expression provided is changed. Using watch command specific variables can be

watched for value changes. You can also view the list of watchpoints by using the ‘info

watchpoints’ command.

Delete <breakpoint number>

Delete command deletes a breakpoint or a watchpoint that has been set by a user while

debugging the program.

Backtrace:

Prints the backtrace of all stack frames of the program. Provides the call stack and more other

information about the running program.

PARAM Ganga – User’s Manual

 Page | 60

These are some of the most powerful utilities that can be used to debug your programs using

gdb. gdb is not limited to these commands and contains a rich set of features that can allow

you to debug multi-threaded programs as well. Also, all the commands, along with the ones

listed above have ‘n’ number of different variants for more in-depth control. Same can be

utilized using the help page of gdb.

Using gdb (example – inspecting the code)

For this case study, we have a small program that generates a long unique random number

for each run.

Let’s look at the code we have.

Figure 13 – Snapshot of debugging process

Things to note:

1) We have a few libraries included for the functions that are used in the program.

2) We have two ‘#define’ statements:

PARAM Ganga – User’s Manual

 Page | 61

a. ‘N’ for the number of times the ‘rand_fract’ function will spend in calculating

the random number.

b. ‘N_LEN’ for the length of the final random number string generated. Currently

it is set to ‘100’ which means that the long random number will be of length

100.

3) Then, we have a function by name ‘rand_fract’ that iterates over two loops and using

the values of iterators (‘i’ and ‘j’), it calculates a small random number. Since, ‘rand()’

function is used for the outer loop, its number of iterations cannot be clearly defined

which gives the function a random nature.

4) The next function is as simple as its name is. It just takes an unsigned integer and

returns its factorial.

PARAM Ganga – User’s Manual

 Page | 62

PART 2:

Figure 14 – Snapshot of debugging process

Things to note:

1) This is the main function of the program.

2) The flow of the main function is as follows:

a. The program first sets a random seed using the process-id of the program.

b. It calls ‘rand_fract’ function and the resultant random number is operated by a

modulo 10 operations. Finally, the result is stored in the variable ‘f1’.

c. Next the factorial of the obtained ‘f1’ is calculated and stored in

‘random_fract’.

d. This result is again passed through a modulo ‘N_LEN + 1’ and stored in

‘normalized_fact’.

PARAM Ganga – User’s Manual

 Page | 63

e. Then a dynamic array is constructed and partially filled will integer values in

descending order from the ‘normalized_fact’ value.

f. Finally, the partial array is printed by mixing the value of the array with rand()

function values followed by a modulo 10 operation.

g. The remaining partial part of final random value is generated using a basic

rand () modulo 10 operations.

Using gdb (example – using the debugger)

The code that we looked upon seems correct, as well as it compiles successfully without any

errors. But, when we run this code snippet, this is the result we get.

Figure 15- Output at a debugging stage

The program ended up with a core dump without giving much information but just ‘Floating

point exception’. Now let’s compile the code with debugging information and run the

program simply with gdb.

PARAM Ganga – User’s Manual

 Page | 64

Figure 16 – Snapshot of debugging process

Here we compiled the code using ‘-g’ and then used the ‘run’ command we studied earlier for

running the program. You can observe that the debugger stopped at line number 13 where the

‘Floating point exception (SIGFPE)’ occurred. At this point we can even go and check the

code at line number 13. But for now, let’s check what other information we can get from the

debugger. Let’s check the values of the variables ‘i’ and ‘j’ at this point.

Figure 17 – Output depicting “Arithmetic Exception”

The values of both ‘i’ and ‘j’ appear to be ‘0’ and thus a divide by zero exception is what

caused our program to terminate. Let’s update the code such that the value of ‘i’ and ‘j’ will

never become ‘0’. This is the modified code:

Figure 18 – Snapshot of debugging process

Thus, we just updated the loop index variables to start from ‘1’ instead of ‘0’. Thus, using

gdb, it was very simple to identify the point where the error occurred. Let’s re-run our updated

code and check what we get.

PARAM Ganga – User’s Manual

 Page | 65

Figure 19 – Well, we dumped core!!

WHAT!? This is unexpected. We just cured the error part of our program and still getting an

FPE. Let’s go through the debugger and check where the error point is right now.

Figure 20- Snapshot of debugging process

PARAM Ganga – User’s Manual

 Page | 66

The debugger output shows that the error occurred on the same line as earlier. But in this

case, the value of ‘i’ and ‘j’ are not ‘0,0’ but they are ‘1, -1’ which is causing the denominator

at line 13 to be ‘0’ and thus, causing an FPE. In addition to print commands, we have also

issued the ‘list’ command which shows the nearby 10 lines of the code where the program

stopped.

You can observe that some bugs in the programs are easier to debug but some aren’t.

We will have to dig in much more to find out what is going on. Also, to be noted, we have

our inner loop iterating from 1 to N (which is 100), but still the value of ‘j’ is printed out to

be ‘-1’. How is this even possible!? Smart programmers would have the problem identified,

but let’s stick to the basics on how to gdb. Let us use the ‘break’ command and set a breakpoint

at line number 13 and observe what is going on.

Figure 21 – Setting Breakpoint

Thus, using the command ‘break 13’ we have set the breakpoint at line number 13 which was

verified using the ‘info breakpoint’ command. Then, we reran the program with the ‘run’

command. At line 13 the program stopped and using ‘print’ command we checked the values

of ‘i’ and ‘j’. at this point, all seems to be well. Now, let’s proceed further. For stepping 1

instruction we can use the ‘step’ command. Let’s do that and observe the value of ‘j’.

PARAM Ganga – User’s Manual

 Page | 67

Figure 22 – single stepping through to catch error!!

You can observe the usage of the ‘step’ command. We are going through the program line by

line and checking the values of the variable ‘j’.

There seems to be a lot of writing/typing of the ‘step’ command just to proceed with the

program. Since, we have already set a breakpoint at line 13, we can use another command

called as ‘continue’. This command continues the program till the next breakpoint or the end

of the program.

Figure 23 – Debugging continued

PARAM Ganga – User’s Manual

 Page | 68

You can see that we reduced the typing of ‘step’ command by 3 times to a ‘continue’ command

just 1 time. But this is also having us write ‘continue’ and ‘print’ multiple times. Let us use

some other utility in gdb known as ‘data breakpoints’ also known as watchpoints. But before

that, let us delete the existing breakpoint using the ‘delete’ command.

Figure 24 – Debugging continued

Now let us see how to set a watchpoint.

Figure 25 – Setting a watch point

Thus, using the command ‘watch j’ we have set a watchpoint over ‘j’. Now every time when

the value of ‘j’ changes, a break will occur. You can also note the old and new values of ‘j’

printed out at each break. Another point to note is that after having one ‘continue’ command,

PARAM Ganga – User’s Manual

 Page | 69

the program had a break. Further, by just pressing the ‘Enter/Return’ button on the keyboard,

the continue command was repeated. Thus, by pressing the ‘Enter/Return’ button, the last

command is repeated. At this point, we have learned much about the debugger, but we are

still not able to proceed fast with our error. Is there any other way to procced? Well, yes!!

We want to observe at the point where the value of ‘j’ reaches closer to ‘N i.e., 100’. Which

means that we are only concerned about what happens after ‘j’ reaches 99. Here, we land up

on using what is called as conditional breakpoints. First, we will delete our watchpoint and

then make use of the conditional breakpoint.

Figure 26 – Debugging continued

You can observe another variant of the ‘break’ command. We have explicitly stated the file

and the line number along with a condition to stop. This is useful, when the source code is

large and having multiple files. After setting a conditional break, we stopped at the point

where the value of ‘j’ becomes ‘99’. Now, let us see what happens next. Since, this is a critical

point at which we could observe the program, it is better if we step in the program using the

‘step’ command instead of relying on any break/watch points.

PARAM Ganga – User’s Manual

 Page | 70

Figure 27 – Well, back to square one!!

This, is unexpected!! The value of ‘j’ should never be 100 or anything above it.

Thus, something is wrong with the conditional statement!!

By observation, we have figured out that the condition is itself wrong. It should have been ‘j

< N’ instead of ‘i < N’. This is a silly mistake of the programmer that led us to this much of

an effort.

Also, the value of ‘j’ which was observed as ‘-1’ was an outcome of the ‘short’ datatype

overflow i.e., the value of ‘j’ went from 1 to 32767 (assuming short as 2 bytes) and then from

-32768 to -1.

Finally, a hard programming bug was discovered. Let us correct this error and rerun the

program.

PARAM Ganga – User’s Manual

 Page | 71

Figure 28 – Again Dumping Core!! Things are getting interesting or frustrating or both !!

This is strange!!

Sometimes the program is getting the correct output, but sometimes, we are getting a

segmentation fault. Debugging such a program may be tricky since the occurrence of the bug

is low. We will proceed with our standard debugger steps to identify the error.

Figure 29 – Debugging continued

We compiled the code and ran it using the debugger. But the program completed successfully.

Let us rerun it till a point where the program fails.

Figure 30 – Debugging continued

Here we observe a point where the program exited at the function ‘factorial’.

PARAM Ganga – User’s Manual

 Page | 72

This is a point where the debugger didn’t give much information about what the value of the

variable ‘x’ was. It just pointed out that the program failed at the function named

‘factorial’. That’s it!

Another reason for such kind of output would be because of the recursive nature of the

function. The stack frame where the function ‘factorial’ failed could be in a long nest of

recursive calls. At such points, it would be better to inspect the program at an earlier point

and look for errors. Let us have a breakpoint before the ‘factorial’ function was called and

view the value of the parameters that are passed to the function.

Figure 31 – Debugging continued (Will it ever end?)

Thus, we have set a breakpoint before the call of the function ‘factorial’ and ran the program.

For the value of ‘f1 = 8’ for the ‘factorial’ function the process seems to exit normally. Let us

rerun.

PARAM Ganga – User’s Manual

 Page | 73

Figure 32 – We are almost there!!

Unexpectedly, we have got the value of ‘f1’ as ‘-8’ and the program seems to have crashed.

Let us observe the ‘rand_fract’ function and ‘factorial’ function once again. And study the

behavior of the functions where we could get a negative number.

Figure 33 – Debugging continued

Important points here to observe are:

The ‘rand_fract’ function is returning a datatype of ‘short’ while the calculation of the return

value could be significantly large which may overflow the size of ‘short’, thus, causing a

negative answer.

PARAM Ganga – User’s Manual

 Page | 74

The function ‘factorial’ is expecting a value of type ‘unsigned int’. Since the value passed to

the function is a negative value, having an implicit conversion from a negative number to an

unsigned number means that we are having a very large value passed to the factorial function.

Also, since the ‘factorial’ function is recursive, passing a very large number to it could cause

multiple calls to the same function and thus, overflowing the stack provided to the user.

Now let us, step further into our program and see whether what we are discussing is the same

behavior that is being observed.

PARAM Ganga – User’s Manual

 Page | 75

Figure 34 – At last a clue!!!

This is what we had expected!!

A number ‘-1’ passed to the ‘factorial’ function is being implicitly converted to a very large

number ‘4294967295’.

Stepping in more reveals the recursive behavior of the ‘factorial’ function i.e., each call is

having a sub call to the same function with one value less. Thus, what to do in these types of

cases. Assume you have a large code where these functions are called from multiple locations.

Modifying the signature of any of the function means changing the code everywhere where

the function is called. This is not affordable!! These are some cases, where a choice is to be

made where patching the code is necessary for semantics of the program.

Let us observe a piece of code where this change can be made and then test our program for

the expected results.

PARAM Ganga – User’s Manual

 Page | 76

Figure 35- Correctionapplied!!

By observing the code, we find out that the expected value of ‘f1’ is between ‘0 to 9’ (because

of the modulo 10 operation).

Thus, without changing the signature of any function, we have inserted a patch (the

highlighted) portion, that maintains the semantics of the code as well cures the problem that

we had. Now let us just run and check our final program.

Figure 36 – Resolved!!!

Thus, we are getting the correct results as expected.

PARAM Ganga – User’s Manual

 Page | 77

Conclusions

We started with a program that we assumed to be functional but then the program ended up

with bugs that were not straightforward. We then explored the power of the debugger and the

various ways to identify the bugs in our program. We looked upon the easy solutions, and

slowly migrated towards the type of bugs that are not easily traceable.

Finally, we identified and corrected all the bugs in our program with the help of the debugger

and arrived at a bug free code.

Points to Note

• Bugs in the program cannot be necessarily a compilation error.

• One type of error can be caused by multiple bugs in the same line of code.

• Sometimes, it is not possible to change the code even when the problem is identified.

The best way to cure this is to study the behavior of the code and apply patches

wherever necessary.

• Using simple utilities from the ‘GNU Debugger’ can help in getting rid of problem

causing bugs in large programs.

Overall Coding Modifications Done

Figure 37 – What all we did to get things right!

PARAM Ganga – User’s Manual

 Page | 78

Machine Learning / Deep Learning Application

Development

Most of the popular python-based machine learning/deep learning libraries are installed on

PARAM Ganga system. While developing and testing their applications, users have option to

choose different environment / runtime setup like “virtual environment-based python

libraries” or “conda runtime-based python libraries”.

For most of the major environment (virenv, conda) different modules are prepared. Users can

check the list of the modules by using “module avail” command. Shown below is an example

of loading conda environment in current bash shell and continue with application

development.

Once logged into PARAM Ganga HPC Cluster, check which all libraries are available, loaded

in current shell. To check list of modules loaded in current shell, use the command given

below:

$ module list

To check all modules available on the system, but not loaded currently, use the command

given below:

$ module avail

To activate conda environment on PARAM Ganga, load module “conda-python/3.7” as

shown below:

$ module load conda-python/3.7

Conda environment has been installed with most of the popular python packages as shown

below:

Tensorflow Tensorflow-gpu Mpi4py Keras

Theano Scipy Scikit-Learn Pytorch

Once “conda-python/3.7” module is loaded, end-users can use all libraries inside their python

program. Many other modules based on virtual env are available on the system. Users can

load those libraries using “module load” command and use them for their applications.

PARAM Ganga – User’s Manual

 Page | 79

How to Install your own Software?

There are two approaches to install software.

1. System wide installation

2. Local installation.

System wide installation can be done by only admin. If you wish to do this, please approach

system administrator. User can do local installation in their home directory. In this section we

are describing the installation of HMMER application in user’s home directory.

Local installation

Step 1. Login to Ganga cluster by using your credential.

Step 2. Download the software that you want to install. For example, to download HMMER

software use the command given below:

$ wget http://eddylab.org/software/hmmer/hmmer.tar.gz

Step 3. Untar the file. (If your software in zip format use unzip command)

$ tar zxf hmmer.tar.gz

Step 4. go to the software folder.

$ cd hmmer-3.3

Step 5. configure the installation path.

$. /configure --prefix /your/install/path

Step 6. now run the 'make' command for install the software on installation path.

$ make

The newly compiled binaries are now in the src directory.

Step 7. Run a test suite that checks for errors in the software (optional)

$ make check

PARAM Ganga – User’s Manual

 Page | 80

Step 8. run 'make install' to install the programs and man pages in your location mention in

step 2

$ make install

By default, programs are installed in /usr/local/bin and man pages in

/usr/local/share/man/man1/, if you do not provide installation path in step 2.

* This is general instruction for installation, please refer the installation instruction or manual

or readme file that comes with software for more details.

If you get any dependency error, resolve that or ask system admin to install that dependency

if not installed.

Reference link: http://hmmer.org/documentation.html

Some Important Facts

About File Size

The global/home is served by a number of storage arrays. Each of the storage array contains

a portion of the global/home. The size of a disk in the storage array is 285TB. Technically,

the size of a file can be about 285 TB (which is really big). However, since the disk is shared

by a large number of files, effectively the size of a single file will be far smaller. Normally,

this file size is kept to be about few GBs which is sufficient for most of the users. However,

if you wish to have file sizes which are larger than this, you need to create files across disks

and this process is known as ‘striping’.

$ lfs setstripe -c 4.

After this has been done all new files created in the current directory will be spread over 4

storage arrays each having 1/4th of the file. The file can be accessed as normal no special

action needs to be taken. When the striping is set this way, it will be defined on a per directory

basis so different directories can have different stripe setups in the same file system, new sub-

directories will inherit the striping from its parent at the time of creation.

We recommend users to set the stripe count so that each chunk will be approx. 200-300GB

each, for example:

PARAM Ganga – User’s Manual

 Page | 81

File Size Stripe count Command

500-1000 GB 4 lfs setstripe -c 4 .

1000 – 2000 GB 8 lfs setstripe -c 8

Once a file is created with a stripe count, it cannot be changed. A user by themselves is also

able to set stripe size and stripe count for their directories and a user can check the set stripe

size and stripe count with command:

$ lfs getstripe <path to the direcory>

To set the stripe count as

$ lfs setstripe -c 4 -s 10m <path to the direcory>

The options on the above command used have these respective functions.

• -c to set the stripe count; 0 means use the system default (usually 1) and -1 means

stripe over all available OSTs (Lustre Object Storage Targets).

• -s to set the stripe size; 0 means use the system default (usually 1 MB) otherwise use

k, m or g for KB, MB or GB respectively

Little-Endian and Big-Endian issues?

By and large, most of the computers follow little-endian format. This essentially means that

the last byte of the binary representation of data is stored first. However, there is another way

of representing data (used in some machines) where in the first byte of the binary

representation of data is stored first. When binary files are to be read across these different

kinds of machines, bytes need to be re-ordered. Many compilers do support this feature.

Please explore this aspect, if a perfectly working code on a given machine, fails to get

executed of another machine (with a different processor).

PARAM Ganga – User’s Manual

 Page | 82

Best Practices for HPC

1. Do NOT run any job which is longer that few minutes on the login nodes. Login node is

for compilation of job. It is best to run the job on computes. (compute nodes)

2. It is recommended to go through the beginner’s guide

 in

/home/apps/Docs/samples This should serve as a good starting point for the new users.

3. Use the same compiler to compile different parts/modules/library-dependencies of an

application. Using different compilers (e.g., pgcc + icc) to compile different parts of

application may cause linking or execution issues.

4. Choosing appropriate compiler switches/flags/options (e.g. –O3) may increase the

performance of application substantially (accuracy of output must be verified). Please

refer to documentation of compilers (online / docs present inside compiler installation

path / man pages etc.)

5. Modules/libraries used for execution should be the same as that used for compilations.

This can be specified in the Job submission script.

6. Be aware of the amount of disk space utilized by your job(s). Do an estimate before

submitting multiple jobs.

7. Please submit jobs preferably in $SCRATCH. You can back up your results/summaries in

your $HOME

8. $SCRATCH is NOT backed up! Please download all your data to your Desktop/Laptop.

9. Before installing any software in your home, ensure that it is from a reliable and safe

source. Ransomware is on the rise!

10. Please do not use spaces while creating the directories and files.

11. Please inform PARAM Ganga support when you notice something strange - e.g.,

unexpected slowdowns, files missing/corrupted etc.

Installed Applications/Libraries

Following is the list of few of the applications from various domains of science and

engineering installed in the system.

PARAM Ganga – User’s Manual

 Page | 83

HPC Applications Bio-informatics MUMmer, HMMER,

MEME,

Schrodinger, PHYLIP,

mpiBLAST, ClustalW,

Molecular Dynamics NAMD (for CPU and GPU),

LAMMPS, GROMACS

Material Modeling, Quantum

Chemistry

Quantum-Espresso, Abinit,

CP2K, NWChem,

CFD OpenFOAM, SU2

Weather, Ocean, Climate WRF-ARW, WPS (WRF),

ARWPost (WRF), RegCM,

MOM, ROMS

Deep Learning Libraries cuDNN, TensorFlow, Tensorflow with Intel Python,

Tensorflow with GPU, Theano, Caffe,Keras, numpy, Scipy,

Scikit-Learn, pytorch.

Visualization Programs GrADS, ParaView, VisIt, VMD

Dependency Libraries NetCDF, PNETCDF, Jasper, HDF5, Tcl, Boost, FFTW

Standard Application Programs on PARAM Ganga

The purpose of this section is to expose the users to different application packages which

have been installed. Users interested in exploring these packages may kindly go through the

scripts, typical input files and typical output files. It is suggested that, at first, the users may

submit the scripts provided and get a feel of executing the codes. Later, they may change the

parameters and the script to meet their application requirements.

LAMMPS Applications

LAMMPS is an acronym for Large-scale Atomic/ Molecular Massively Parallel Simulator.

This is extensively used in the fields of Material Science, Physics, Chemistry and may

others. More information about LAMMPS may please be found at

https://lammps.sandia.gov .

1. The LAMMPS input is in.lj file which contains the below parameters. Input file = in.lj

PARAM Ganga – User’s Manual

 Page | 84

3d Lennard-Jones melt
 variable x index 1 variable
y index 1 variable z index 1
 variable xx equal 64*$x variable

yy equal 64*$y variable zz equal 64*$z
 units lj atom_style
atomic

lattice fcc 0.8442
region box block 0 ${xx} 0 ${yy} 0 ${zz} create_box 1 box

create_atoms 1 box mass 1 1.0

velocity all create 1.44 87287 loop geom
 pair_style lj/cut 2.5 pair_coeff 1 1 1.0

1.0 2.5

neighbor 0.3 bin
neigh_modify delay 0 every 20 check no

fix 1 all nve
 run 1000000

2. THE LAMMPS RUNNING SCRIPT

#!/bin/sh

#SBATCH -N 8
#SBATCH --ntasks-per-node=40
#SBATCH --time=08:50:20

PARAM Ganga – User’s Manual

 Page | 85

#SBATCH --job-name=lammps
#SBATCH --error=job.%J.err_8_node_40
#SBATCH --output=job.%J.out_8_node_40
#SBATCH --partition=standard

module load compiler/intel/2018.2.199
module load compiler/intel-mpi/mpi-2018.2.199

module load compiler/gcc/7.3.0
 source
/opt/ohpc/pub/apps/intel/2018_2/compilers_and_libraries_2018.2.199/linux/mk l/bin/mklvars.sh intel64
 export I_MPI_FALLBACK=disable export

I_MPI_FABRICS=shm:ofa #export
I_MPI_FABRICS=shm:tmi #export

I_MPI_FABRICS=shm:dapl export

I_MPI_DEBUG=5

cd /home/manjunath/NEW_LAMMPS/lammps-7Aug19/bench

export OMP_NUM_THREADS=1

time mpiexec.hydra -n $SLURM_NTASKS -genv OMP_NUM_THREADS 1
/home/manjunath/NEW_LAMMPS/lammps-7Aug19/src/lmp_intel_cpu_intelmpi -in in.lj

3. LAMMPS OUTPUT FILE.

LAMMPS (7 Aug 2019)
 using 1 OpenMP thread(s) per MPI task
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
Created orthogonal box = (0 0 0) to (107.494 107.494 107.494)
 5 by 8 by 8 MPI processor grid
Created 1048576 atoms
 create_atoms CPU = 0.00387692 secs
Neighbor list info ...
 update every 20 steps, delay 0 steps, check no max neighbors/atom:
2000, page size: 100000 master list distance cutoff = 2.8 ghost atom

cutoff = 2.8 binsize = 1.4, bins = 77 77 77
 1 neighbor lists, perpetual/occasional/extra = 1 0 0
 (1) pair lj/cut, perpetual attributes: half, newton on

pair build: half/bin/atomonly/newton stencil:
half/bin/3d/newton
 bin: standard
Setting up Verlet run ...
 Unit style : lj
 Current step : 0
 Time step : 0.005
Per MPI rank memory allocation (min/avg/max) = 3.154 | 3.156 | 3.162 Mbytes

PARAM Ganga – User’s Manual

 Page | 86

Step Temp E_pair E_mol TotEng Press
 0 1.44 -6.7733681 0 -4.6133701 -5.0196704
 1000000 0.65684946 -5.7123998 0 -4.7271266 0.49078272 Loop time of 2955.97 on 320 procs

for 1000000 steps with 1048576 atoms
Performance: 146145.063 tau/day, 338.299 timesteps/s
99.4% CPU use with 320 MPI tasks x 1 OpenMP threads

MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total

Pair | 1284.2 | 1512.3 | 1866.9 | 494.3 | 51.16
Neigh | 178.94 | 207.58 | 261.09 | 217.8 | 7.02
Comm | 793.59 | 1207.7 | 1468.3 | 654.3 | 40.86
Output | 0.00011516 | 0.00084956 | 0.0027411 | 0.0 | 0.00
Modify | 19.566 | 22.639 | 29.863 | 67.3 | 0.77 Other | | 5.744 | |

| 0.19
Nlocal: 3276.8 ave 3325 max 3231 min
Histogram: 4 7 21 63 67 80 50 22 5 1
Nghost: 5011.29 ave 5063 max 4956 min
Histogram: 5 9 26 45 57 76 51 34 12 5
Neighs: 122781 ave 127005 max 118605 min
Histogram: 3 5 36 59 63 52 66 24 11 1

Total # of neighbors = 39290074
Ave neighs/atom = 37.4699
Neighbor list builds = 50000
Dangerous builds not checked
Total wall time: 0:49:15

GROMACS APPLICATION

GROMACS

GROningen MAchine for Chemical Simulations (GROMACS) is a molecular dynamics

package mainly designed for simulations of proteins, lipids, and nucleic acids. It was

originally developed in the Biophysical Chemistry department of University of Groningen,

and is now maintained by contributors in universities and research centers worldwide.

GROMACS is one of the fastest and most popular software packages available, and can run

on central processing units (CPUs) and graphics processing units (GPUs).

Input description of Gromacs

Input file can be download from

ftp://ftp.gromacs.org/pub/benchmarks/water_GMX50_bare.tar.gz

The mdp option used is pme with 50000 steps Submission

Script:

PARAM Ganga – User’s Manual

 Page | 87

#!/bin/sh
#SBATCH -N 10
#SBATCH --ntasks-per-node=48
##SBATCH --time=03:05:30
#SBATCH --job-name=gromacs
#SBATCH --error=job.16.%J.err
#SBATCH --output=job.16.%J.out
#SBATCH --partition=standard

cd /home/shweta/water-cut1.0_GMX50_bare/3072 module load
compiler/intel/2018.5.274
module load apps/gromacs/5.1.4/cpu/intel_18.5
 export I_MPI_DEBUG=5 export
OMP_NUM_THREADS=1
mpirun -np 4 gmx_mpi grompp -f pme.mdp -c conf.gro -p topol.top
 time mpirun -np $SLURM_NTASKS gmx_mpi mdrun -s topol.tpr) 2>&1 | tee

log_gromacs_40_50k_mpirun

Output Snippet:

Number of logical cores detected (48) does not match the number reported by
OpenMP (1).
Consider setting the launch configuration manually!
Running on 10 nodes with total 192 cores, 480 logical cores
 Cores per node: 0 - 48
 Logical cores per node: 48
Hardware detected on host cn072 (the node of MPI rank 0):
 CPU info:
 Vendor: GenuineIntel
 Brand: Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz
 SIMD instructions most likely to fit this hardware: AVX2_256
 SIMD instructions selected at GROMACS compile time: AVX2_256
Reading file /home/shweta/Gromacs/water-cut1.0_GMX50_bare/3072/topol.tpr,
VERSION 5.1.4 (single precision)
Changing nstlist from 10 to 20, rlist from 1 to 1.032
The number of OpenMP threads was set by environment variable
OMP_NUM_THREADS to 1 (and the command-line setting agreed with that) NOTE: KMP_AFFINITY
set, will turn off gmx mdrun internal affinity setting as the two can conflict and cause performance

degradation. To keep using the gmx mdrun internal affinity setting, set the
 KMP_AFFINITY=disabled environment variable.
Overriding nsteps with value passed on the command line: 50000 steps, 100 ps
Will use 360 particle-particle and 120 PME only ranks
This is a guess, check the performance at the end of the log file
Using 480 MPI processes
Using 1 OpenMP thread per MPI process
Back Off! I just backed up ener.edr to ./#ener.edr.2# starting mdrun 'Water'
50000 steps, 100.0 ps.

 Average load imbalance: 5.5 %

PARAM Ganga – User’s Manual

 Page | 88

 Part of the total run time spent waiting due to load imbalance: 3.0 % Average PME mesh/force load: 1.252
 Part of the total run time spent waiting due to PP/PME imbalance: 13.2 % NOTE: 13.2 % performance was

lost because the PME ranks had more work to do than the PP ranks.
 You might want to increase the number of PME ranks or increase the cut-off and
the grid spacing.

 Core t (s) Wall t (s) (%)
 Time: 204872.624 427.847 47884.5
 (ns/day) (hour/ns)
Performance: 20.195 1.188

PARAM Ganga – User’s Manual

 Page | 89

Acknowledging the National Supercomputing Mission in

Publications

If you use supercomputers and services provided under the National Supercomputing

Mission, Government of India, please let us know of any published results including Student

Thesis, Conference Papers, Journal Papers and patents obtained.

Please acknowledge the National Supercomputing Mission as given below:

We acknowledge National Supercomputing Mission (NSM) for providing computing

resources of ‘PARAM Ganga’ at IIT Roorkee, which is implemented by C-DAC and

supported by the Ministry of Electronics and Information Technology (MeitY) and

Department of Science and Technology (DST), Government of India.

Also, please submit the copies of dissertations, reports, reprints and URLs in which “National

Supercomputing Mission, Government of India” is acknowledged to:

HoD HPC Technologies,

Centre for Development of Advanced Computing,

CDAC Innovation Park,

S.N. 34/B/1,

Panchavati, Pashan,

Pune – 411008, Maharashtra

Communication of your achievements using resources provided by National Supercomputing

Mission, will help the Mission in measuring outcomes and gauging the future requirements.

This will also help in further augmentation of resources at a given site of National

Supercomputing Mission.

Getting Help – PARAM Ganga Support

We suggest that you please refer to these four easy steps to generate a Ticket related to the

issue you are experiencing.

PARAM Ganga – User’s Manual

 Page | 90

Your Ticket will be assisted by the GANGA Support team. The ticket generated will be closed

only when the related issue gets resolved.

You can generate a new ticket for any of the new issue that you are experiencing.

Steps to Create a New Ticket

1. Place the URL (https://paramganga.iitr.ac.in/support) in your browser.

2. On the right-top corner of the page click Sign In. Refer to Fig: 38 for the same.

Figure 38 – Snapshot of Ticketing System

3. Sign in by using the Username and Password that you use for logging to the Cluster. Refer

to Fig: 39 for the same.

PARAM Ganga – User’s Manual

 Page | 91

Figure 39 - Snapshot of Ticketing System

4. Select a Help Topic from the Dropdown and then click on Create Ticket. Refer to Fig: 40

for the same

Figure 40 - Snapshot of Ticketing System

5. Please fill in the details of your issue in the fields given and then click on Create ticket.

PARAM Ganga – User’s Manual

 Page | 92

Figure 41 - Snapshot of Ticketing System

Once the Ticket is generated, an acknowledgement e-mail will be sent to your official e-

mail address. The e-mail will also contain the Ticket number along with reference to the

ticket that you have generated.

In case of any difficulty while accessing GANGA Support you can reach us via e-mail at

paramganga@iitr.ac.in

Closing Your Account on PARAM Ganga

When once you have completed your research work and you no longer need to use PARAM

Ganga, you may please close your account on PARAM Ganga. Please raise a ticket by

following the URLhttps://paramganga.iitr.ac.in/support The system administrator will guide

you about the “Closure Procedure”. You will need clearance from your project-coordinator/

Supervisor/ Head of the Department about you having surrendered this resource for getting

“no dues” certificate from the institute.

PARAM Ganga – User’s Manual

 Page | 93

PARAM Ganga ACCOUNT REQUEST FORM

User Details:

First Name: ________________________ Last Name:

Organization Name: __

Organization Address:

Gender: __________

Department: _______________________________

Designation: ________________________________

(Designation: If student, provide the details below)

Roll No.: _____________ Course: ____________ Academic Year:

Official Email address: ________________________________

Office no.: ___________________ Mobile no.: ___________________________

(If Research, provide the details below)

Nature of the

Research:___

PARAM Ganga – User’s Manual

 Page | 94

Project Details:

Project Name:

Nature of the Project:

Brief Description of the Project:

Project Start Date: _________________ Project Duration: _________________

Proposed work on PARAM Ganga& Requirement of resources:

__

_

PARAM Ganga HPC facility usage policies:

1. The resources provided to you on PARAM Ganga facility should not be used for any

commercial purpose i.e., it is restricted for the academic use like research projects, academic

projects, NSM projects, NSM approved MSME projects and scientific projects.

2. Sharing your login credentials with some third person will revoke the responsibility of

PARAM Ganga administration committee for data theft and your account will also be

disabled. The third person will also be held accountable for misusing the PARAM Ganga

facility.

3. It is strictly recommended that you should not run jobs on login node and any such incident

reported will result in cancellation of the job and any repeat action will result in closure of

your account.

4. You will be responsible for informing the PARAM Ganga administration about your project

completion, project cancellation and moving or copying data related to your project from

PARAM Ganga.

PARAM Ganga – User’s Manual

 Page | 95

5. You will be solely responsible for keeping your password strong and safe.

6. If found in any engagement or promotion of activities like hacking, reverse-engineering,

violating intellectual property rights on or using the PARAM Ganga facility, you will be

barred from having account on any supercomputer setup under the National Supercomputing

Mission.

7. The facility is built with least downtime requirement; however, it depends on various factors

like Hardware reliability, Power outage, network outage, scheduled maintenance due to

which the facility could be unavailable completely/partially. Notification of all scheduled /

unscheduled maintenance will be made known to the users via Website, Email, broadcast

message, newsgroups etc.

8. This facility will not be used for any purpose connected with Chemical or Biological or

nuclear weapons or missiles capable of delivering such Weapons.

9. Acknowledging the usage of the facility is mandatory.

If you use supercomputers and services provided under the National Supercomputing Mission,

Government of India, please let us know of any published results including Student Thesis,

Conference Papers, Journal Papers and patents obtained.

10. User is the owner and hence responsible for all data copied and generated using PARAM

Ganga and PARAM Ganga administration is not responsible for the same. Users should

ensure the required backup and protection of the data.

11. PARAM Ganga administration is not responsible for compromising accounts, data theft, data

publications, data claim, etc.

Performa for Acknowledging the usage:

Performa for Acknowledging the usage: We acknowledge National Supercomputing Mission

(NSM) for providing computing resources of ‘PARAM Ganga’ at IIT Roorkee, which is

implemented by C-DAC and supported by the Ministry of Electronics and Information

Technology (MeitY) and Department of Science and Technology (DST), Government of

India.

PARAM Ganga – User’s Manual

 Page | 96

Also, please submit the copies of dissertations, reports, reprints and URLs in which “National

Supercomputing Mission, Government of India” is acknowledged to:

HoD, HPC Technologies,

Centre for Development of Advanced Computing,

CDAC Innovation Park,

S.N. 34/B/1,

Panchavati, Pashan,

Pune – 411008

Maharashtra

Email: paramganga@iitr.ac.in

Communication of your achievements using resources provided by National

Supercomputing Mission, will help the Mission in measuring outcomes and gauging the

future requirements. This will also help in further augmentation of resources at a given site

of National Supercomputing Mission.

I acknowledge the above-mentioned usage policies & terms and conditions.

User’s signature

Recommended/Not Recommended

Signature and seal of HoD/Head of Organization:

Name:

Designation:

Department:

Official Email address:

Only for Official Use

Approving Authority for NSM

PARAM Ganga – User’s Manual

 Page | 97

Verified by:

Approving Authority:

Approved/Not Approved

Remarks:

__

Name, Signature and seal of approving authority

Information required for NSM (National Supercomputing Mission) users

Domain(s)*:

Sub-domain(s)*:

Application name(s)*:

(Indicative list of Domains and some of its applications)

Domain Name Application Name

Astronomy & Astrophysics ATHENA, CosmoMC

Atomic & Molecular Sciences
Gromacs, LAMMPS, NAMD, AMBER

(Open Source)

Computational Biology Biopython

Bioinformatics
mpiBlast, Clustaw- MPI,Fasta, Artemis,

Tcoffee

Chemical Sciences Gromacs, LAMMPS, NAMD

Climate & Environment Sciences
MOM,Weather Research Forecasting model

(WRF), COSMO

Computational Fluid Dynamics OpenFoam, Tycho, Gerris flow Solver

Computational Physics OOFEM

Computational Sciences
Gromacs, LAMMPS, NAMD, AMBER

(open

PARAM Ganga – User’s Manual

 Page | 98

 source)

Data analytics RStudio, Apache Spark

Geological Sciences Ferret

Data Visualization GRADS, Ferret, ParaView

Material Sciences Quantum Espresso, Q-chem

Quantum Mechanics Abinit, NWChem, CP2K

Structural Engineering Mechanics CODE-ASTER

AI/ML/DL Tensorflow, Nvidia digits, pandas, numpy

Image Processing OpenCV, Matplotlib, Scikit-image

Atmospheric/Ocean Modelling
MOM,Weather Research Forecasting model

(WRF)

Please specify other application name if not

listed above

 (* form may get rejected if no mandatory information is provided)

References

1. https://lammps.sandia.gov/

2. https://www.openacc.org/

3. https://www.openmp.org/

4. https://computing.llnl.gov/tutorials/mpi/

5. https://developer.nvidia.com/cuda-zone

6. https://www.mmm.ucar.edu/weather-research-and-forecasting-model

7. http://www.gromacs.org/

8. https://www.openfoam.com/

9. https://slurm.schedmd.com/

PARAM Ganga – User’s Manual

 Page | 99

10. https://www.tutorialspoint.com/gnu_debugger/what_is_gdb.htm

11. https://nsmindia.in/

12. https://en.wikipedia.org/wiki/Deep_learning

13. https://docs.conda.io/en/latest/

14. https://docs.conda.io/en/latest/miniconda.html

15. https://www.tensorflow.org/

16. https://www.tensorflow.org/install

17. https://github.com/PaddlePaddle/Paddle

18. https://keras.io/

19. https://pytorch.org

20. https://mxnet.apache.org

21. https://software.intel.com/en-us/distribution-for-python

22. https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-

installationguide

23. https://github.com/spack/spack

24. https://spack.readthedocs.io/en/latest/getting_started.html

25. https://spack.readthedocs.io/en/latest/basic_usage.html

26. https://spack.readthedocs.io/en/latest/packaging_guide.html

27. https://spack.readthedocs.io/en/latest/build_systems.html

28. https://spack.readthedocs.io/en/latest/

