

PARAM Ganga

Quick Start Guide

Ver. 1.0

Last updated: February 28, 2022

www.cdac.in

http://www.cdac.in/

Page | 2

First Things First

This document is the quick start guide for the PARAM Ganga Supercomputing facility at IIT

Roorkee. It covers brief details about the hardware infrastructure, compilers and modules,

submitting jobs, retrieving the results on to user’s Laptop/ Desktop etc.

The supercomputer PARAM Ganga is based on a heterogeneous and hybrid configuration of

Intel Xeon Cascade lake processors, and NVIDIA Tesla V100.

The total peak computing capacity of 1.67 (CPU+GPU+HM) PFLOPS performance.

First login

Whenever the newly created user on PARAM Ganga tries to login with the user Id and

password (temporary, system generated) provided over the Email through PARAM Ganga

support, he/she will next be prompted to create a “new password” of their choice which

will change the temporary, system generated password. This will enable you to keep your

account secure. It is recommended that you have a strong password which contains the

combination of alphabets (lower case / upper case), numbers, and a few special

characters that you can easily remember.

Given next is a screenshot that describes the scenario for “first login”

Your password will be valid for 90 days. On expiry of 90 days period, you will be
prompted to change your password, on attempting to log in. You are required to provide
a new password.

System Access

Accessing the cluster

The cluster can be accessed through 10 general login nodes, which allows users to login.

Page | 3

▪ You may access login node through ssh.

▪ The login node is primary gateway to the rest of the cluster, which has a job
scheduler (called Slurm). You may submit jobs to the queue and they will run when the
required resources are available.

▪ Please do not run programs directly on login node. Login node is use to submit
jobs, transfer data and to compile source code. (If your compilation takes more than a few
minutes, you should submit the compilation job into the queue to be run on the cluster.)

Remote Access

Using SSH in Windows

To access PARAM Ganga, you need to “ssh” the login server. PuTTY is the most popular

open source “ssh” client application for Windows, you can Download it from

(http://www.putty.org/). Once installed, find the PuTTY application shortcut in your Start

Menu, desktop. On clicking the PuTTY icon, The PuTTY Configuration dialog should

appear. Locate the “Host Name or IP Address” input Field in the PuTTY Configuration

screen. Enter the user name along with IP address or Hostname with which you wish to

connect.

(e.g. [username]@paramganga.iitr.ac.in)

Enter your password when prompted, and press Enter.

Using SSH in Mac or Linux

Both Mac and Linux systems provide a built-in SSH client, so there is no need to install

any additional package. Open the terminal, connect to an SSH server by typing the

following command:

 For example, to connect to the PARAM Ganga Login Node, with the username

You will be prompted for a password, and then will be connected to the server.

If you are accessing the facility outside IITR network, please use port 4422

ssh [username]@[hostname]

ssh [username]@[hostname] –p 4422

user1: ssh paramganga.iitr.ac.in

http://www.putty.org/)
http://www.putty.org/)

Page | 4

Password

How to change the user password?

Use the passwd command to change the password for the user from login node.

Tools to accessing cluster

MobaXterm (Windows installable application):

It is a third party freely available tool which can be used to access the HPC system

and transfer file to PARAM Ganga system through your local systems

(laptop/desktop).

Link to download this tool : https://mobaxterm.mobatek.net/download-home-edition.html

 Figure 3 - A snapshot of command using MobaXterm

Command Prompt (Windows native application):

This is a native tool for Windows machine which can be used to transfer data from

PARAM Ganga system through your local systems (laptop/desktop).

 Figure 4 - A snapshot of "scp" command using Windows command prompt.

PowerShell (Windows native application):

This is a This is a native tool for Windows machine which could be used to transfer

data from PARAM Ganga system through your local systems (laptop/desktop).

https://mobaxterm.mobatek.net/download-home-edition.html

Page | 5

 Figure 5 - A snapshot of "scp” command using Windows PowerShell.

Page | 6

Introduction

System Hardware Specifications

PARAM Ganga systems are based on Intel Xeon Platinum 8268, NVIDIA Tesla V100 with

total peak performance of 1.6 PFLOPS. The cluster consists of compute nodes connected

with Mellanox (HDR) InfiniBand interconnect network. The system uses the Lustre

parallel file system.

● Total number of nodes: 332 (20 + 312)

o Service nodes: 20**(Master+ Login+ Service+ Management Nodes)

o CPU nodes: 214

o GPU nodes: 20

o High Memory nodes:78

CPU Compute Nodes: 214

CPU nodes are indeed the work horses of PARAM Ganga. All the CPU intensive activities

are carried on these nodes. Users can access these nodes from the login node to run

interactive or batch jobs. Some of the nodes have higher memory, which can be exploited

by users in the aforementioned way

CPU Nodes: 214

2* Intel Xeon Platinum 8268
Cores = 48, 2.9 GHz

Total Cores = 10,272 cores

Memory= 192 GB, DDR4 2933
MHz

Total Memory=41088 GB

SSD = 480 GB (local scratch) per
node

High Memory nodes: 78

Some compute nodes may feature a particular specification to be used for a particular

job, or stage in your workflow.

These are High Memory nodes that provide users to run their memory intensive jobs.

CPU only Compute Nodes with High memory: 78

2* Intel Xeon Platinum 8268
Cores = 48, 2.9 GHz Total Cores = 3744 cores
Memory= 768 GB, DDR4 2933 MHz Total Memory=59904 GB

SSD = 480 GB (local scratch) per node

Page | 7

GPU Compute Nodes: 20

GPU compute nodes are the nodes that have CPU cores along with accelerators cards.

For some applications GPUs get markedly high performance. For exploiting these, one

has to make use of special libraries which map computations on the Graphical

Processing Units (Typically one has to make use of CUDA or OpenCL).

GPU Compute Nodes: 20

2* Intel Xeon G-6248
Cores = 40, 2.5 GHz

Total Cores = 800 cores

Memory= 192 GB, DDR4 2933
MHz

Total Memory= 3840 GB

SSD = 480 GB (local scratch) per
node

2*NVidia V100 per node
GPU Cores per node= 2*5120=
10240

GPU Memory = 16 GB HBM2 per NVidia V100

Operating System

Operating system on PARAM Ganga is Linux – CentOS 7.9

Software Stack

The software stack provided with this system has a gamut of software components which

meets all the requirements of a user and that of a system administrator. The components

of the software stack are depicted in figure 1.

 Figure 1 – Software Stack

Commented [T1]:

Commented [T2]: Need to change architecture diagram

Commented [T3R2]:

Page | 8

Modules

Most of the popular python based machine learning/deep learning libraries are installed

on PARAM Ganga system. While developing and testing their applications, users

have option to choose different environment / runtime setup like “virtual environment-

based python libraries” or “conda runtime based python libraries”.

Once logged into PARAM Ganga HPC Cluster, check which all libraries are available,

loaded in current shell. To check list of modules loaded in current shell, use the

command given below:

To check all modules available on the system, but not loaded currently, use the

command given below:

To activate conda environment on PARAM Ganga, load module “conda-python/3.7” as

shown below:

$ module list

$ module avail

Page | 9

Running Interactive Jobs

In general, the jobs can be run in an interactive manner or in batch mode. You can run an

interactive job as follows:

The following command asks for a single core on one hour with default amount of memory.

The command prompt will appear as soon as the job starts. This is how it looks once the

interactive job starts:

Where xxxxx is the job id.

Exit the bash shell to end the job. If you exceed the time or memory limits the job will

also abort.

Please note that PARAM Ganga is NOT meant for executing interactive jobs. However, for

the purpose of quickly ascertaining successful run of a job before submitting a large job in

batch (with large iteration counts), this can be used. This can even be used for running

small jobs. The point to be kept in mind is that, since others too would be using this node,

it is prudent not to inconvenience them by running large jobs.

It is a good idea to specify the CPU account name as well (if you face any problems)

$ srun --nodes=1 --ntasks-per-node=1 --time=01:00:00 --pty bash -i

srun: job xxxxx queued and waiting for resources srun: job xxxxx has been

allocated resources

$ srun --account=<NAME_OF_MY_ACCOUNT> --nodes=1 --ntasks-per-node=1

-- time=01:00:00 -- pty bash -i

 $ module load DL-CondaPy/3.7

Page | 10

Managing Jobs through its

Lifecycle

PARAM Ganga extensively uses modules. The purpose of module is to provide the

production environment for a given application, outside of the application itself. This also

specifies which version of the application is available for a given session. All applications

and libraries are made available through module files. A User has to load the appropriate

module from the available modules.

A simple Slurm job script

List Partition

sinfo displays information about nodes and partitions(queues).
$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
queue_test up 1:00:00 312 idle cn[001-214],hm[001-078],gpu[001-020]

module
avail

This command lists all the available
modules

module load compiler/intel/2018.4 # This will load the intel compilers into
your

environment

module unload compiler/intel/2018.4 # This will remove all environment

setting related to intel-2018 compiler loaded previously

#!/bin/sh

#SBATCH -N

16

// specifies number of

nodes #SBATCH --ntasks-per-node=40 // specifies core per node

#SBATCH --time=06:50:20 // specifies maximum duration of

run #SBATCH --job-name=lammps // specifies job name

#SBATCH --error=job.%J.err_node_40 // specifies error file

name #SBATCH --output=job.%J.out_node_40 //specifies output

file name #SBATCH --partition=standard // specifies queue name

#SBATCH --nodelist=cn[031,046] // nodelist specifies particular nodes

to be allocated

export

I_MPI_FABRICS=shm:dapl

hostname

Page | 11

We can consider three cases of submitting a job

1. Submitting a simple standalone job

 This is a simple submit script which is to be submitted

2. Submit a job that's dependent on a prerequisite job being completed

Consider a requirement of pre-processing a job before proceeding to actual processing.

Pre-processing is generally done on a single core. In this scenario, the actual processing

script is dependent on the outcome of pre-processing script.

Here’s a simple job script. Note that the Slurm -J option is used to give the job a name.

Now we'll submit another job that's dependent on the previous job. There are many

ways to specify the dependency conditions, but the "singleton" method is the simplest.

The Slurm -d singleton argument tells Slurm not to dispatch this job until all previous jobs

with the same name have completed.

Once the prerequisite job finishes the dependent job is dispatched.

3. Submitting multiple jobs with minor or no changes (array jobs)

A SLURM job array is a collection of jobs that differs from each other by only a single

index parameter.

$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

150 queue_test simple user1 R 0:31 1 atom01

$ sbatch slurm-job.sh

Submitted batch job 106

#!/usr/bin/env bash

#SBATCH –p queue_test
#SBATCH -J simple

sleep 60

Submit the job: $ sbatch simple.sh Submitted
batch job 149

$ sbatch -d singleton simple.sh //may be used for first pre-processing

on a core and then submitting

Submitted batch job 150

$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

150 standard simple user1 PD 0:00 1 (Dependency)

149 standard simple user1 R 0:17 1 atom01

https://www.brightcomputing.com/Blog/bid/172545/How-to-Submit-a-Simple-Slurm-GPU-job-to-your-Linux-cluster

Page | 12

 Figure 8 – snapshot depicting the usage of “Job Array”

Monitoring jobs on SLURM can be done using the command squeue. squeue is used to

view job and job step information for jobs managed by SLURM.

$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

106 standard slurm-jo user1 R 0:04 1 atom01

More about Batch Jobs (SLURM)

Page | 26

SLURM (Simple Linux Utility for Resource Management) is a workload manager that provides

a framework for job queues, allocation of compute nodes, and the start and execution of

jobs.

It is important to note:

a. Compilations are done on the login node. Only the execution is scheduled via SLURM
on the compute/GPU nodes

b. Upon Submission of a Job script, each job gets a unique Job Id. This can be obtained
from the ‘squeue’ command.

c. The Job Id is also appended to the output and error filenames.

Parameters used in SLURM job Script

The job flags are used with SBATCH command. The syntax for the SLURM directive in a

script is "#SBATCH <flag>". Some of the flags are used with the srun and salloc

commands.

Resource Flag Syntax Description
partition --partition=partition name Partition is a queue for jobs.

time --time=01:00:00 Time limit for the job.
nodes --nodes=2 Number of compute nodes for the

job.
cpus/cores --ntasks-per-node=8 Corresponds to number of cores

on the compute node.
resource
feature

--gres=gpu:2 Request use of GPUs on compute
nodes

account --account=group-slurm-
account

Users may belong to groups or
accounts.

job name --job-name="lammps" Name of job.
output file --output=lammps.out Name of file for stdout.
email
address

--mail-
user=username@iitr.ac.in

User's email address

access --exclusive Exclusive access to compute
 nodes.

Script for a Sequential Job

#!/bin/bash

#SBATCH -N 1 / number of nodes

#SBATCH --ntasks-per-node=1 / number of cores

per node #SBATCH --error=job.%J.err / name of

output file #SBATCH --output=job.%J.out / name

of error file

#SBATCH --time=01:00:00 / time required to execute the program

mailto:user=username@iitr.ac.in

Page | 27

Script for a Parallel OpenMP Job

Script for Parallel Job – MPI (Message Passing Interface)

#SBATCH --partition=standard / Partition or queue name

// To load the module //

module load

compiler/intel/2018.2.199 cd <Path

of the executable>.

/home/cdac/a.out (Name of the executable).

#!/bin/bash

#SBATCH -N 1 / Number of nodes

#SBATCH --ntasks-per-node=24 / Number of core per

node #SBATCH --error=job.%J.err / Name of output

file #SBATCH --output=job.%J.out / Name of error

file

#SBATCH --time=01:00:00 / Time take to execute the

program #SBATCH --partition=standard / Partition or

queue name

/ To load the module /

module load

intel/2018.0.1.163 cd <

path of the executable>

Export OMP_NUM_THREADS=24 (Depending upon your requirement you can

change number of threads . Maximum no.of threads is =24)

/home/cdac/a.out (Name of the executable).

#!/bin/sh

#SBATCH -N 16 / Number of nodes

#SBATCH --ntasks-per-node=40 / Number of cores for node

#SBATCH --time=06:50:20 / Time required to execute the

program #SBATCH --job-name=lammps / Name of application

#SBATCH --error=job.%J.err_16_node_40 / Name of the output

file #SBATCH --output=job.%J.out_16_node_40 / Name of the

error file #SBATCH --partition=standard / Partition or queue

name

// To load the module //

module load

compiler/intel/2018.2.199 module

unload gnu8/8.3.0

source

/opt/ohpc/pub/intel2018/compilers_and_libraries_2018.1.163/linux/mkl/bin/mk

lvars.sh intel64

// Below are the MPI Settings

// export

I_MPI_FALLBACK=disable

export I_MPI_FABRICS=shm:tmi // Fabrics required for with node inter node

//

Page | 28

Script for Hybrid Parallel Job – (MPI + OpenMP)

#!/bin/sh

#SBATCH -N 16 / Number of nodes

#SBATCH --ntasks-per-node=40 / Number of cores for node

#SBATCH --time=06:50:20 / Time required to execute the

program #SBATCH --job-name=lammps / Name of application

#SBATCH --error=job.%J.err_16_node_40 / Name of the output

file #SBATCH --output=job.%J.out_16_node_40 / Name of the

error file #SBATCH --partition=standard / Partition or queue

name

// To load the module //

module load compiler/intel/2018.2.199

module unload gnu8/8.3.0

source

/opt/ohpc/pub/intel2018/compilers_and_libraries_2018.1.163/linux/mkl/bin/mk

lvars.sh intel64

// Below are the MPI Settings //

export I_MPI_FALLBACK=disable

export I_MPI_FABRICS=shm:tmi // Fabrics required for with node inter node

//

export I_MPI_DEBUG=9 // Level of debug //

Export OMP_NUM_THREADS=20 (Depending upon your requirement you can

change number of threads . Maximum no.of threads is =40)

cd /home/manjuv/LAMMPS_2018COMPILER/lammps-22Aug18/bench

// Command to run the lammps in Parallel //

time mpiexec.hydra -genv I_MPI_DEBUG 9 -n $SLURM_NTASKS -

genv OMP_NUM_THREADS 20

/home/manjuv/LAMMPS_2018COMPILER/lammps-

22Aug18/src/lmp_intel_cpu_intelmpi -in in.lj

export I_MPI_DEBUG=9 // Level of debug //

cd /home/manjuv/LAMMPS_2018COMPILER/lammps-22Aug18/bench

// Command to run the lammps in Parallel //

time mpiexec.hydra -genv I_MPI_DEBUG 9 -n $SLURM_NTASKS -genv

OMP_NUM_THREADS 1 /home/manjuv/LAMMPS_2018COMPILER/lammps-

22Aug18/src/lmp_intel_cpu_intelmpi -in in.lj

Page | 29

I am familiar with PBS/ TORQUE. How do I migrate

to SLURM?

Environment Variables PBS/Torque SLURM

Job Id $PBS_JOBID $SLURM_JOBID

Submit Directory $PBS_JOBID $SLURM_SUBMIT_DIR

Node List $PBS_NODEFILE $SLURM_JOB_NODELIST

Job Specification PBS/Torque SLURM

Script directive #PBS #BATCH

Job Name -N [name] --job-name=[name] OR -J
[name]

Node Count -1 nodes=[count] --nodes=[min[-max]] OR -N
[min[-max]]

CPU count -1 ppn=[count] ---ntasks-per-node=[count]

CPUs Per Task --cpus-per-task=[count]

Memory Size -1 mem-[MB] --mem=[MB] OR –
mem_per_cpu=[MB]

Wall Clock Limit -1 walltime=[hh:mm:ss] --time=[min] OR –
mem_per_cpu=[MB]

Node Properties -1
nodes=4.ppn=8:[property]

--constraint=[list]

Standard Output File -o [file_name] --output=[file_name] OR -o
[file_name]

Standard Error File -e [file_name] --error=[file_name] OR -e
{file_name]

Combine stdout/stderr -j oe (both to stdout) (This is default if you do not
specify –error)

Job Arrays -t [array_spec] --array=[array_spec] OR -a
[array_spec]

Delay Job Start -a [time] --begin=[time]

Page | 30

Standard Application Programs on PARAM Ganga

The purpose of this section is to expose the users to different application packages which

have been installed. Users interested in exploring these packages may kindly go through

the scripts, typical input files and typical output files. It is suggested that, at first, the users

may submit the scripts provided and get a feel of executing the codes. Later, they may

change the parameters and the script to meet their application requirements.

LAMMPS Applications

LAMMPS is an acronym for Large-scale Atomic/ Molecular Massively Parallel Simulator.

This is extensively used in the fields of Material Science, Physics, Chemistry and may

others.

More information about LAMMPS may please be found at https://lammps.sandia.gov .

1. The LAMMPS input is in.lj file which contains the below parameters.

Input file = in.lj

3d Lennard-Jones melt

index 1

index 1

index 1

xx equal 64*$x

yy equal 64*$y

zz equal 64*$z

units

lj

atomic

lattice

region

create_box

mass

fcc 0.8442

box block 0 ${xx} 0 ${yy} 0 ${zz}

1 box

1 box

1 1.0

velocity all create 1.44 87287 loop geom

lj/cut 2.5

1 1 1.0 1.0 2.5

neighbor

0.3 bin

delay 0 every 20 check no

fix 1 all nve

run 1000000

https://lammps.sandia.gov/

Page | 31

2. Sample SLURM script for LAMMPS for 32 nodes

#!/bin/sh

#SBATCH -N 32

#SBATCH --ntasks-per-node=48

##SBATCH --time=52:50:20

#SBATCH --job-name=lammps

#SBATCH --error=job.%J.err_32_node_40

#SBATCH --output=job.%J.out_32_node_40

#SBATCH --partition=queue_test

module load compiler/intel/2018_4

export

LD_LIBRARY_PATH=/opt/ohpc/pub/compiler/intel/2018_4/compilers_and_libraries_2018.5.274/

linux/mkl/lib/intel64:$LD_LIBRARY_PATH

export

MKL_ROOT=/opt/ohpc/pub/compiler/intel/2018_4/compilers_and_libraries_2018.5.274/linux/m

kl:$MKL_ROOT

source

/opt/ohpc/pub/compiler/intel/2018_4/compilers_and_libraries_2018.5.274/linux/tbb/bin/tb

bvars.sh intel64

module unload gnu8/8.3.0

export I_MPI_FALLBACK=disable

export I_MPI_FABRICS=shm:dapl

export I_MPI_DEBUG=5

cd /home/manjunath/LAMMPS/lammps-29Sep2021/bench

#!/bin/sh

#SBATCH -N 2

#SBATCH --ntasks-per-node=40

#SBATCH --time=02:50:20

#SBATCH --job-name=lammps

#SBATCH --error=job.%J.err_2_node_40

#SBATCH --output=job.%J.out_2_node_40

#SBATCH --partition=standard

#SBATCH --exclusive

module unload gnu8/8.3.0

module load intel/2018.2.199

source

/opt/ohpc/pub/apps/intel/2018_2/compilers_and_libraries_2018.2.199/linux/mk

l/bin/mklvars.sh intel64

export I_MPI_FALLBACK=disable

export I_MPI_FABRICS=shm:dapl

export I_MPI_DEBUG=9

cd /home/manjunath/LAMMP_TEST/LAMMPS_2018/lammps-22Aug18/bench

export OMP_NUM_THREADS=1

time mpiexec.hydra -n $SLURM_NTASKS -genv OMP_NUM_THREADS 1

/home/manjunath/LAMMP_TEST/LAMMPS_2018/lammps-

22Aug18/src/lmp_intel_cpu_intelmpi -in in.lj

Page | 32

ulimit -s unlimited # stack

ulimit -d unlimited # data area

ulimit -c unlimited

ulimit -a

ulimit -n

export OMP_NUM_THREADS=1

time mpiexec.hydra -n $SLURM_NTASKS -genv OMP_NUM_THREADS 1

/home/<username>/LAMMPS/lammps-29Sep2021/src/lmp_intel_cpu_intelmpi -in in.lj

3. LAMMPS OUTPUT FILE.

LAMMPS (22 Aug 2018)

using 1 OpenMP thread(s) per MPI task

Lattice spacing in x,y,z = 1.6796 1.6796 1.6796

Created orthogonal box = (0 0 0) to (107.494 107.494 107.494)

8 by 10 by 16 MPI processor grid

Created 1048576 atoms

Time spent = 0.048476 secs

Neighbor list info ...

update every 20 steps, delay 0 steps, check no max

neighbors/atom: 2000, page size: 100000 master list

distance cutoff = 2.8

ghost atom cutoff = 2.8 binsize =

1.4, bins = 77 77 77

1 neighbor lists, perpetual/occasional/extra = 1 0 0

(1) pair lj/cut, perpetual

attributes: half, newton on

pair build: half/bin/atomonly/newton stencil:

half/bin/3d/newton

bin: standard Setting up

Verlet run ...

Unit style : lj

Current step : 0

Time step :

0.005

Per MPI rank memory allocation (min/avg/max) = 2.699 | 2.703 | 2.708 Mbytes

Step Temp E_pair E_mol TotEng Press

0 1.44 -6.7733681 0 -4.6133701 -5.0196704

1000000 0.65695755 -5.7125359 0 -4.7271005 0.48799127

Loop time of 723.716 on 1280 procs for 1000000 steps with 1048576 atoms

Performance: 596918.946 tau/day, 1381.757 timesteps/s

99.5% CPU use with 1280 MPI tasks x 1 OpenMP threads

MPI task timing breakdown:

Section | min time | avg time | max time |%varavg| %total

Nlocal: 819.2 ave 845 max 786 min

Histogram: 3 2 34 115 256 372 315 137 33 13

Nghost: 2417.97 ave 2468 max 2369 min

Histogram: 8 31 81 216 314 327 202 76 22 3

Pair | 424.38 | 435.47 | 461.05 | 26.2 | 60.17

Neigh | 59.782 | 60.365 | 62.991 | 3.9 | 8.34

Comm | 193.24 | 219.39 | 231.11 | 38.5 | 30.31

Output | 0.00013494 | 0.00085223 | 0.0088639 | 0.0 | 0.00

Modify | 6.4813 | 6.6462 | 7.541 | 5.6 | 0.92

Other | | 1.841 | | | 0.25

Page | 33

OpenFOAM

OpenFOAM is a free, opensource software which covers most areas of Engineering and

Science. It can be used to solve very interesting problems in fields ranging from

Turbulence, Heat transfer, Acoustics, Electromagnetics, complex fluid flows including

chemical reactions, solid mechanics and a lot more. Please follow the link

https://www.openfoam.com to get more information.

Description of Inputs for openFOAM

Input file is taken from NASA website which does wing body simulation. The data can

be copied from /home/apps/Data/OpenFOAM path on PARAM Ganga

Grid size: 10
million Solver:
sonicFoam
Iterations: 4000
Decomposition of grid is done using Metis.

Script of OpenFOAM

#!/bin/sh

#SBATCH -N

50

#SBATCH --ntasks-per-

node=40 #SBATCH --

threads-per-core=1

#SBATCH --ntasks=2000

#SBATCH --time=06:50:20

#SBATCH --job-name=openfoam

#SBATCH --

error=job.%J.err_16_node_40 #SBATCH

--output=job.%J.out_16_node_40

#SBATCH --partition=queue_test

###SBATCH --nodelist=cn[175-

190] ##SBATCH --

nodelist=cn[013-028]

ulimit -s

unlimited ulimit

-c 0

#module load

intel/2018.0.1.163 #module

load intel/2019.5.281 module

unload gnu8/8.3.0

module load openmpi-3.1.0_gcc_4.8.5

source /home/shwetad/OpenFOAM/GCC-openmpi/openfoam_bashrc_gcc_openmpi

https://www.openfoam.com/

Page | 34

#source

/opt/ohpc/pub/intel2018/compilers_and_libraries_2018.1.163/linux/mkl/bin/mk

lvars.sh intel64

export

I_MPI_FALLBACK=disable

export

I_MPI_FABRICS=shm:dapl

export I_MPI_DEBUG=5

export I_MPI_PIN_PROCESSOR_LIST=0-39

############MXM

Optimization############ export

 I_MPI_DAPL_SCALABLE_PROGRESS

=1 export

I_MPI_RDMA_TRANSLATION_CACHE=1

export I_MPI_FAIR_CONN_SPIN_COUNT=2147483647

export I_MPI_FAIR_READ_SPIN_COUNT=2147483647

#export I_MPI_ADJUST_REDUCE 2, I_MPI_ADJUST_BCAST

0 export I_MPI_RDMA_TRANSLATION_CACHE=1

export I_MPI_RDMA_RNDV_BUF_ALIGN=65536

export I_MPI_SPIN_COUNT=121

export I_MPI_DAPL_DIRECT_COPY_THRESHOLD=65536

#export I_MPI_DAPL_UD=enable

source /home/shwetad/OpenFOAM/Intel-

2018/openfoam_bashrc_2018 #source

/home/shwetad/OpenFOAM/openfoam_bashrc

export OMP_NUM_THREADS=1

cd

/home/shwetad/OpenFOAM_DATA/NSM

#export FI_PROVIDER=mlx/ofi/verbs

rm -rf

processor*

decomposePar

(time mpirun -np 2000 sonicFoam -parallel) 2>&1 | tee out_4000_NSM_50Node

Output Values after 4000 iterations:

forceCoeffs forces

write: Cm = -8.50123

Cd = 0.0327941

Cl = -1.926

Cl(f) = -9.46423

Cl(r) = 7.53823

The said iterations complete in 2minutes 50 seconds on 50 nodes.

WRF Application

The Weather Research and Forecasting (WRF) Model is a next-generation mesocale

numerical weather prediction system designed to serve both operational forecasting and

atmospheric research needs. WRF is suitable for a broad spectrum of applications across

scales ranging from meters to thousands of kilometers. WRF was developed at the

National Center for Atmospheric Research (NCAR) which is operated by the University

Corporation for Atmospheric Research (UCAR), USA.

More information about WRF may please be found at:

https://www.mmm.ucar.edu/weather-research-and-forecasting-

https://www.mmm.ucar.edu/weather-research-and-forecasting-model

Page | 35

model

For a reference run, the dataset used is as following with model simulation time

being reduced to 15 minutes:

Dataset: Single domain, large size. 2.5 km CONUS, June 4, 2005

(Ref: https://www2.mmm.ucar.edu/wrf/WG2/benchv3/#_Toc212961289)

The WRF input files used for reference run are present in /home/apps/Data/WRF/input/run

1. WRF job submission SLURM script

The following reference job script is placed in

Changes/Suggestions to

namelist.input

&time_control

run_hours

run_minutes

io_form_history

io_form_restart

io_form_input

= 0,

= 15,

= 11,

= 11,

= 11,

= 11,

= 2,

//parallel-

netcdf

//serial-

netcdf

&dynamics

 = .t.,

&namelist_quil

t

// For no. of nodes (e.g. greater than

32 nodes) using quilt servers gives

better performance

nio_tasks_per_group =

0,

nio_groups = 1,

https://www.mmm.ucar.edu/weather-research-and-forecasting-model
https://www2.mmm.ucar.edu/wrf/WG2/benchv3/#_Toc212961289

Page | 36

/home/apps/Data/WRF/input/run/wrf_4n.sh

#!/bin/bash

#SBATCH -N 4

#SBATCH --ntasks-per-node=40

#SBATCH --time=00:30:00 #SBATCH

--job-name=WRF_CONUS

#SBATCH --error=job.%J.err

#SBATCH --output=job.%J.out

#SBATCH --partition=queue_test

cd $SLURM_SUBMIT_DIR

###Loading WRF environment module

load wrf/3.8.1/intel2018

###Creating list of nodes to map WRF MPI processes

mpiexec.hydra -n $SLURM_NTASKS hostname > hosts.txt

sort -u hosts.txt > hosts_wrf.txt

sed -i 's/$/:20/' hosts_wrf.txt

###Two OpenMP threads per MPI rank

WRFMPI=` expr $SLURM_NTASKS / 2 `

###Setting Intel MPI environment

export I_MPI_DEBUG=9

export I_MPI_FALLBACK=disable

(time mpiexec.hydra --machinefile hosts_wrf.txt -env I_MPI_PIN_DOMAIN

omp:compact -env OMP_NUM_THREADS=2 -env KMP_STACKSIZE=200m -n $WRFMPI wrf.exe)

>& 4n.2omp.wrf.out

To save execution command to out file

echo "(time mpiexec.hydra --machinefile hosts_wrf.txt -env I_MPI_PIN_DOMAIN

omp:compact -env OMP_NUM_THREADS=2 -env KMP_STACKSIZE=200m -n $WRFMPI

wrf.exe)" >> 4n.2omp.wrf.out

Page | 37

DL Application
The DL Frame Work available in DL-Conda

Once “conda-python/3.7” module is loaded, end-users can use all libraries inside their

python program. Many other modules based on virtual environment are available on the

system.

Users can load those libraries using “module load” command and use them for

their applications.

DL Framework

Name Support Version

Tensorflow CPU and
GPU

2.0.0

Pytorch CPU and
GPU

1.3.1

Theano CPU and
GPU

1.0.5

Caffe CPU and
GPU

1.0

keras CPU and
GPU

2.3.1

Data science
framework

RAPIDS GPU 22.02

pandas CPU 1.3.5

cupy GPU 9.6.0

#!/bin/bash

#SBATCH -N 1 # Specify number of the nodes

#SBATCH -n 2 # Specify number of the tasks

to run

#SBATCH -p gpu # Specify GPU Partition name

#SBATCH --gres=gpu:2 # Specify number of the gpus

#SBATCH --output=dljob_%J.out # Specify output file to store

output of the model

#SBATCH --error=dljob_%J.err # Specify error file

#SBATCH --time=03:00:00 # Specify time limit {HH:MM:SS}

Load conda-python module using module load <module>

module load DL-CondaPy/3.7 #THIS MODULE HAS ALL POPULAR DL PACKAGES

##python <yourcode.py>

python yourcode.py

